
CHAPTER  T EN

MECHANICAL  PROPERTIES  OF F LUIDS

10.1 INTRODUCTION

In this chapter , we shall study  some common physical
pr operties of liquids and gases. Liquids and gases can  flow
and ar e ther efore, called  fluids.  It is this pr operty that
distinguishes liquids and gases fr om solids in a basic way.

Fluids ar e everywher e around us. Earth has an envelop of
air and two-thir ds of its sur face is cover ed with water .  Water
is not only necessary for our existence; every mammalian
body constitute mostly of water . All the  pr ocesses occurring
in living beings including plants ar e mediated by fluids. Thus
understanding the behaviour and pr operties of fluids is
important.

How ar e fluids dif ferent fr om solids? What is common in
liquids and gases? Unlike  a solid, a fluid has no definite
shape of its own. Solids and liquids have a fixed volume,
wher eas a gas fills the entir e volume of its container . We
have lear nt in the pr evious chapter that the volume of solids
can be changed by str ess. The volume of solid, liquid or gas
depends on the str ess or pr essur e acting on it. When we
talk about fixed volume of solid or liquid, we mean its volume
under atmospheric pr essur e. The dif ference between gases
and solids or liquids is that for solids or liquids the change
in volume due to  change of exter nal pr essure is rather small.
In other wor ds solids and liquids have much lower
compr essibility as compar ed to gases.

Shear str ess can change the shape of a solid keeping its
volume fixed. The key pr operty of fluids is that they of fer
very little r esistance to shear str ess; their shape changes by
application of very small shear str ess. The shearing str ess
of fluids is about million times smaller than that of solids.

10.2  PRESSURE

A sharp needle when pr essed against our skin pier ces it. Our
skin, however , r emains intact when a blunt object with a
wider contact ar ea (say the back of a spoon) is pr essed against
it with the same for ce. If an elephant wer e to step on a man’s
chest, his ribs would crack. A cir cus per for mer acr oss whose
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chest a lar ge, light but str ong wooden plank is
placed first, is saved fr om this accident. Such
everyday experiences convince us that both the
for ce and its coverage ar ea are important. Smaller
the ar ea on which the for ce acts, gr eater is the
impact. This concept is known  as pr essur e.

When an object is submer ged in a fluid at
rest, the fluid exerts a for ce on its sur face. This
for ce is always nor mal to the object’s sur face.
This is so because if ther e wer e a component of
for ce parallel to the sur face, the object will also
exert a for ce on the fluid parallel to it; as a
consequence of Newton’s thir d law. This for ce
will cause the fluid to flow parallel to the sur face.
Since the fluid is at r est, this cannot happen.
Hence, the for ce exerted by the fluid at r est has
to be perpendicular to the sur face in contact
with it. This is shown in Fig.10.1(a).

The nor mal for ce exerted by the fluid at a point
may be measur ed. An idealised for m of one such
pr essur e-measuring device is shown in Fig.
10.1(b). It consists of an evacuated chamber with
a spring that is calibrated to measur e the for ce
acting on the piston. This device is placed at a
point inside the fluid. The inwar d for ce exerted
by the fluid on the piston is balanced by the
outwar d spring for ce and is ther eby measur ed.

If F is the magnitude of this nor mal for ce on the
piston of ar ea A then the average pr essur e Pav

is defined as the nor mal for ce acting per unit
area.

P
F
Aav =              (10.1)

In principle, the piston ar ea can be made
arbitrarily small. The pr essur e is then defined
in a limiting sense as

P = 
lim

DA 0®
D

D

F

A
(10.2)

Pressur e is a scalar quantity. W e remind the
r eader that it is the component of the for ce
nor mal to the ar ea under consideration and not
the (vector) for ce that appears in the numerator
in Eqs. (10.1) and (10.2). Its dimensions ar e
[ML –1T–2]. The SI unit of pr essur e is N m –2. It has
been named as pascal (Pa) in honour of the
French scientist Blaise Pascal (1623-1662) who
carried out pioneering studies on fluid pr essur e.
A common unit of pr essur e is the atmospher e
(atm), i.e. the pr essur e exerted by the
atmospher e at sea level (1 atm = 1.013 ´  10 5 Pa).

Another quantity, that is indispensable in
describing fluids, is the density r . For a fluid of
mass m occupying volume V,

r =
m
V

(10.3)

The dimensions of density ar e [ML –3]. Its SI
unit is kg m –3. It is a positive scalar quantity. A
liquid is lar gely incompr essible and its density
is ther efore, nearly constant at all pr essur es.
Gases, on the other hand exhibit a lar ge
variation in densities with pr essur e.

The density of water at 4 oC (277 K) is
1.0 ´  10 3 kg m –3. The r elative density of a
substance is the ratio of its density to the
density of water at 4 oC. It is a dimensionless
positive scalar quantity. For example the r elative
density of aluminium is 2.7. Its density is
2.7 ´  103  kg m –3

.  The densities of some common
fluids ar e displayed in T able 10.1.

Table 10.1 Densities of some common fluids
at STP*(a) (b)

Fig. 10.1 (a) The for ce exerted by the liquid in the
beaker on the submer ged object or on the
walls is nor mal (perpendicular) to the
sur face at all points.
(b) An idealised device for measuring
pressur e.

* STP means standar d temperatur e (00C) and 1 atm pr essur e.
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Example 10.1   The two thigh bones
(femurs), each of cr oss-sectional ar ea10 cm 2

support the upper part of a human body of
mass 40 kg. Estimate the average pr essur e
sustained by the femurs.

Answer   Total cr oss-sectional ar ea of the
femurs is A = 2 ´  10 cm 2 = 20 ´  10 –4 m 2. The
for ce acting on them is F = 40 kg wt = 400 N
(taking g = 10 m s –2). This for ce is acting
vertically down and hence, nor mally on the
femurs. Thus, the average pr essur e is

25 m N 10  2    -´==
A
F

Pav                             t

10.2.1 Pascal’s Law

The Fr ench scientist Blaise Pascal observed that
the pr essur e in a fluid at r est is the same at all
points if they ar e at the same height. This fact
may be demonstrated in a simple way.

Fig. 10.2 shows an element in the interior of
a fluid at r est. This element ABC-DEF is in the
for m of a right-angled prism. In principle, this
prismatic element is very small so that every
part of it can be consider ed at the same depth
fr om the liquid sur face and ther efore, the ef fect
of the gravity is the same at all these points.
But for clarity we have enlar ged this element.
The for ces on this element ar e those exerted by
the r est of the fluid and they must be nor mal to
the sur faces of the element as discussed above.
Thus, the fluid exerts pr essur es Pa, Pb and Pc on

this element of ar ea corr esponding to the nor mal
for ces Fa, Fb and Fc as shown in Fig. 10.2 on the
faces BEFC, ADFC and ADEB denoted by Aa, Ab

and Ac r espectively. Then
Fb sin q = F c, Fb cosq = Fa (by equilibrium)
Ab sinq = Ac, Ab cos q = Aa (by geometry)

Thus,

;b c a
b c a

b c a

F F F
P P P

A A A
= = = = (10.4)

Hence, pr essur e exerted is same in all
dir ections in a fluid at r est. It again r eminds us
that like other types of str ess, pr essur e is not a
vector quantity. No dir ection can be assigned
to it.  The for ce against any ar ea within (or
bounding) a fluid at r est and under pr essur e is
nor mal to the ar ea, r egardless of the orientation
of the ar ea.

Now consider a fluid element in the for m of a
horizontal bar of unifor m cr oss-section. The bar
is in equilibrium. The horizontal for ces exerted
at its two ends  must be balanced or the
pr essur e at the two ends should be equal. This
pr oves that for a liquid in equilibrium the
pr essur e is same at all points in a horizontal
plane. Suppose the pr essur e were not equal in
dif ferent parts of the fluid, then ther e would be
a flow as the  fluid will have some net for ce
acting on it. Hence in the absence of flow the
pr essur e in the fluid must be same everywher e.
Wind is flow of air due to pr essur e dif ferences.

10.2.2 Variation of Pr essur e with Depth

Consider a fluid at r est in a container . In
Fig. 10.3 point 1 is at height h above a point 2.
The pr essur es at points 1 and 2 ar e P1 and P2

respectively. Consider a cylindrical element of
fluid having ar ea of base A and height h. As the
fluid is at r est the r esultant horizontal for ces
should be zer o and the r esultant vertical for ces
should balance the weight of the element. The
for ces acting in the vertical dir ection ar e due to
the fluid pr essur e at the top ( P1A) acting
downwar d, at the bottom ( P2A) acting upwar d.
If mg is weight of the fluid in the cylinder we
have

(P2 -  P1) A = mg (10.5)
Now, if r  is the mass density of the fluid, we

have the mass of fluid to be m = r V= r h A so
that

P
2 
-

 
P

1
=  r gh (10.6)

Fig. 10.2 Proof of Pascal’s law. ABC-DEF is an
element of the interior of a fluid at r est.
This element is in the for m of a right-
angled prism. The element is small so that
the ef fect of gravity can be ignor ed, but it
has been enlar ged for the sake of clarity.
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Fig.10.3 Fluid under gravity. The ef fect of gravity
is illustrated thr ough pr essure on a vertical
cylindrical column.

Pressur e dif ference depends on the vertical
distance h between the points (1 and 2), mass
density of the fluid r  and acceleration due to
gravity g. If the point 1 under discussion is
shifted to the top of the  fluid (say water), which
is open to the atmospher e, P1 may be r eplaced
by atmospheric pr essur e (Pa) and we r eplace P 2

by P. Then Eq. (10.6) gives

P =  Pa + r gh (10.7)

Thus, the pr essur e P, at depth below the
sur face of a liquid open to the atmospher e is
gr eater than atmospheric pr essur e by an
amount r gh. The excess of pr essur e, P -

 
P

a
, at

depth h is called a gauge pr essur e at that point.
The ar ea of the cylinder is not appearing in

the expr ession of absolute pr essur e in Eq. (10.7).
Thus, the height of the fluid column is important
and not cr oss sectional or base ar ea or the shape
of the container . The liquid pr essur e is the same
at all points at the same horizontal level (same
depth).  The r esult is appr eciated thr ough the
example of hydr ostatic paradox . Consider thr ee
vessels A, B and C  [Fig.10.4] of dif ferent shapes.
They ar e connected at the bottom by a horizontal
pipe. On filling with water the level in the thr ee
vessels is the same though they hold dif ferent
amounts of water . This is so, because water at
the bottom has the same pr essur e below each
section of the vessel.

Fig 10.4 Illustration of hydr ostatic paradox. The
thr ee vessels A, B and C contain dif ferent
amounts of liquids, all upto the same
height.

Example 10.2 What is the pr essur e on a
swimmer 10 m below the sur face of a lake?

Answer  Here
h = 10 m  and r  = 1000 kg m -3. T ake g = 10 m s –2

From Eq. (10.7)
P =  Pa + r gh
   = 1.01 ´  10 5 Pa + 1000 kg m –3 ´  10 m s –2 ´  10 m
   = 2.01 ´  105 Pa
    » 2 atm

This is a 100% incr ease in pr essur e fr om
sur face level. At a depth of 1 km the incr ease in
pr essur e is 100 atm! Submarines ar e designed
to withstand such enor mous pr essur es.   t

10.2.3 Atmospheric Pr essur e and Gauge
Pressur e

The pr essur e of the atmospher e at any point is
equal to the weight of a column of air of unit
cross sectional ar ea extending fr om that point
to the top of the atmospher e. At sea level it is
1.013 ´  10 5 Pa (1 atm). Italian scientist
Evangelista T orricelli (1608-1647) devised for
the f irst t ime, a method for measuring
atmospheric pr essur e. A long glass tube closed
at one end and filled with mer cury is inverted
into a tr ough of mer cury as shown in Fig.10.5 (a).
This device is known as mer cury bar ometer . The
space above the mer cury column in the tube
contains only mer cury vapour whose pr essur e
P is so small  that it may be neglected. The
pr essur e inside the column at point A must
equal the pr essur e at point B, which is at the
same level. Pr essur e at B = atmospheric
pr essur e = Pa

Pa = r gh (10.8)
wher e r  is the density of mer cury and h is the
height of the mer cury column in the tube.
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In the experiment it is found that the mer cury
column in the bar ometer has a height of about
76 cm at sea level equivalent to one atmospher e
(1 atm). This can also be obtained using the
value of r  in Eq. (10.8). A common way of stating
pr essur e is in ter ms of cm or mm of mer cury
(Hg). A pr essur e equivalent of 1 mm is called a
torr (after T orricelli).

1 torr = 133 Pa.
The mm of Hg and torr ar e used in medicine

and physiology. In meteor ology, a common unit
is the bar and millibar .

1 bar = 10 5 Pa
An open-tube manometer is a useful

instrument for measuring pr essur e dif ferences.
It consists of a U-tube containing a suitable
liquid i.e. a low density liquid (such as oil) for
measuring small pr essur e dif ferences and a
high density liquid (such as mer cury) for lar ge
pr essur e dif ferences. One end of the tube is open
to the atmospher e and other end is connected
to the system whose pr essur e we want to
measur e [see Fig. 10.5 (b)]. The pr essur e P at A
is equal to pr essur e at point B.  What we
nor mally measur e is the gauge pr essur e, which
is P -  Pa, given by Eq. (10.8) and is pr oportional
to manometer height h.

Fig 10.5   Two pr essur e measuring devices.

Pressur e is same at the same level on both
sides of the U-tube containing a fluid.  For
liquids the density varies very little over wide
ranges in pr essur e and temperatur e and we can
tr eat it safely as a constant for our pr esent
purposes. Gases on the other hand, exhibits
lar ge variations of densities with changes in
pressur e and temperatur e. Unlike gases, liquids
are ther efore, lar gely tr eated as incompr essible.

Example 10.3  The density of the
atmospher e at sea level is 1.29 kg/m 3.
Assume that it does not change with
alt i tude. Then how high would the
atmospher e extend?

Answer  We use Eq. (10.7)

r gh  =  1.29 kg m –3  ́  9.8 m s 2 ́  h  m = 1.01 ´  10 5 Pa

\  h = 7989 m » 8 km

In r eality the density of air decr eases with
height. So does the value of g. The atmospheric
cover extends with decr easing pr essur e over
100 km. W e should also note that the sea level
atmospheric pr essur e is not always 760 mm of
Hg. A dr op in the Hg level by 10 mm or mor e is
a sign of an appr oaching stor m. t

Example 10.4  At a depth of 1000 m in an
ocean (a) what is the absolute pr essur e?
(b) What is the gauge pr essur e? (c) Find
the for ce acting on the window of ar ea
20 cm ´  20 cm of a submarine at thisFig 10.5 (a) The mercury bar ometer.

(b) the open tube manometer
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depth, the interior of which is maintained
at sea-level atmospheric pr essur e. (The
density of sea water is 1.03 ´  10 3 kg m -3,
g = 10m s –2.)

Answer  Here h = 1000 m  and r  = 1.03 ´  10 3 kg m -3.
(a) From Eq. (10.6), absolute pr essur e

P =  Pa + r gh
= 1.01 ´  10 5 Pa
   + 1.03 ´  10 3 kg m –3  ´  10 m s –2 ´  1000 m
=  104.01 ´  105 Pa
» 104 atm

(b) Gauge pr essur e is P -  Pa = r gh = Pg

Pg = 1.03 ´  10 3 kg m –3 ´  10 ms 2 ´  1000 m
    = 103 ´  105 Pa
     » 103 atm

(c) The pr essure outside the submarine is
P =  Pa + r gh and the pr essur e inside it is
Pa. Hence, the net pr essur e acting on the
window is gauge pr essur e, Pg = r gh. Since
the ar ea of the window is A = 0.04 m 2, the
for ce acting on it is
F = Pg A = 103 ´  105 Pa ́  0.04 m 2 = 4.12 ´ 10 5 N

  t

10.2.4  Hydraulic Machines

Let us now consider what happens when we
change the pr essur e on a fluid contained in a
vessel. Consider a horizontal cylinder with a
piston and thr ee vertical tubes at dif fer ent
points.  The pr essur e in the horizontal cylinder

is indicated by the height of liquid column in
the vertical tubes.It is necessarily the same in
all. If we push the piston, the fluid level rises in
all the tubes, again r eaching the same level in
each one of them.

This indicates that  when the pr essur e  on
the cylinder was incr eased, it was distributed
unifor mly thr oughout. W e can say  whenever
exter nal pr essur e is applied on any part of a
fluid contained in a vessel, it is transmitted
undiminished and equally in all dir ections.
This is the Pascal’s law for transmission of
fluid pr essur e and has many applications in
daily life.

A number of devices such as hydraulic lift
and hydraulic brakes  ar e based on the Pascal’s
law. In these devices fluids ar e used for
transmitting pr essur e. In a hydraulic lift as
shown in Fig. 10.6 two pistons ar e separated
by the space filled with a liquid. A piston of small
cross section  A1 is used to exert a for ce F1

dir ectly on the liquid. The pr essur e P = 
1

1

F
A  is

transmitted thr oughout the liquid to the lar ger
cylinder attached with a lar ger piston of ar ea A2,
which r esults in an upwar d for ce of P × A2.
Therefor e, the piston is capable of supporting a
lar ge for ce (lar ge weight of, say a car , or a truck,

placed on the platfor m) F2 = PA2 = 
1 2

1

F A

A . By

changing the for ce at A1, the platfor m can be

Archemedes’ Principle
Fluid appears to pr ovide partial support to the objects placed in it.  When a body is wholly or partially
immersed in a fluid at r est, the fluid exerts pr essur e on the sur face of the body in contact with the
fluid. The pr essur e is gr eater on lower sur faces of the body than on the upper sur faces as pr essur e in
a fluid incr eases with depth. The r esultant of all the for ces is an upwar d for ce called buoyant for ce.
Suppose that a cylindrical body is immersed in the fluid. The upwar d for ce on the bottom of the body
is mor e than the downwar d for ce on its top. The fluid exerts a r esultant upwar d for ce or buoyant for ce
on the body equal to  ( P2-P1 ) A. We have seen in equation 10.4 that ( P2-P1 )A = r ghA. Now hA is the
volume of the solid and  r hA is the weight of an equivaliant volume of the fluid. ( P2 -P1)A = mg. Thus the
upwar d for ce exerted is equal to the weight of the displaced fluid.

The result holds true irr espective of the shape of the object and her e cylindrical object is consider ed
only for convenience. This is Ar chimedes’ principle. For totally immersed objects the volume of the
fluid displaced by the object is equal to its own volume. If the density of the immersed object is mor e
than that of the fluid, the object will sink as the weight of the body is mor e than the upwar d thrust. If
the density of the object is less than that of the fluid, it floats in the fluid partially submer ged. To
calculate the volume submer ged. Suppose the total volume of the object is Vs and  a part Vp of it is
submer ged  in the fluid.  Then the upwar d for ce which is the weight of the displaced fluid is r fgVp ,
which must equal the weight of the body; r sgVs = r fgVpor  r s/ r f = Vp / Vs  The appar ent weight of the
floating body is zer o.

This principle can be summarised as; ‘the loss of weight of a body submer ged (partially or fully) in
a fluid is equal to the weight of the fluid displaced’.
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moved up or down. Thus, the applied for ce has

been incr eased by a factor of 
2

1

A
A  and this factor

is the mechanical advantage of the device. The
example below clarifies it.

Fig 10.6 Schematic diagram il lustrating the
principle behind the hydraulic lift, a device
used to lift heavy loads.

Example 10.5  Two syringes of dif ferent
cross sections (without needles) filled with
water ar e connected with a tightly fitted
rubber tube filled with water . Diameters
of the smaller piston and lar ger piston ar e
1.0 cm and 3.0 cm r espectively. (a)  Find
the for ce exerted on  the lar ger piston when
a for ce of 10 N is applied to the smaller
piston. (b) If the smaller piston is pushed
in thr ough 6.0 cm, how much does the
lar ger piston move out?

Answer  (a) Since pr essur e is transmitted
undiminished thr oughout the fluid,

( )
( )

2–2

2
2 1 2–2

1

3 /2 10 m
10N

1/2 10 m

A
F F

A

p

p

´
= = ´

´

             = 90 N

(b) W ater is consider ed to be per fectly
incompr essible. V olume cover ed by the
movement of smaller piston inwar ds is equal to
volume moved outwar ds due to the lar ger piston.

2211 ALAL =

( )
( )

2–2

–21
2 1 2–2

2

1/2 10 m
6 10 m

3 /2 10 m

A
L L

A

p

p

´
= = ´ ´

´

       j  0.67 ´  10 -2 m = 0.67 cm
Note, atmospheric pr essur e is common to both
pistons and has been ignor ed. t

Example 10.6  In a car lift compr essed air
exerts a for ce F

1
 on a small piston having

a radius of 5.0 cm. This pr essur e is
transmitted to a second piston of radius
15 cm (Fig 10.7). If the mass of the car to
be lifted is 1350 kg, calculate F

1
. What is

the pr essur e necessary to accomplish this
task? ( g = 9.8 ms -2).

Answer  Since pr essur e is transmitted
undiminished thr oughout the fluid,

( )
( )

( )
2–2

–21
1 2 2–2

2

5 10 m
1350 N 9.8 m s

15 10 m

A
F F

A

p

p

´
= = ´

´

= 1470 N
» 1.5 ´  10 3 N

The air pr essur e that will pr oduce this
for ce is

( )
3

51
2–2

1

1.5 10 N
1.9 10 Pa

5 10 m

F
P

A p

´
= = = ´

´

This is almost double the atmospheric
pr essur e.   t

Hydraulic brakes in automobiles also work
on the same principle. When we apply a little

Ar chimedes was a Gr eek philosopher , mathematician, scientist and engineer . He
invented the catapult and devised a system of pulleys and levers to handle heavy
loads. The king of his native city Syracuse, Hier o II asked him to deter mine if his gold
crown was alloyed with some cheaper metal such as silver without damaging the cr own.
The partial loss of weight he experienced while lying in his bathtub suggested a solution

to him. Accor ding to legend, he ran naked thr ough the str eets of Syracuse exclaiming “Eur eka,
eur eka!”, which means “I have found it, I have found it!”

Ar chimedes (287 – 212 B.C.)
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for ce on the pedal with our foot the master
piston moves inside the master cylinder , and
the pr essur e caused is transmitted thr ough the
brake oil to act on a piston of lar ger ar ea. A
lar ge for ce acts on the piston and is pushed
down expanding the brake shoes against brake
lining. In this way a small for ce on the pedal
pr oduces a lar ge retar ding for ce on the wheel.
An important advantage of the system is that
the pr essur e set up by pr essing pedal is
transmitted equally to all cylinders attached to
the four wheels so that the braking ef fort is
equal on all wheels.

10.3   STREAMLINE FLOW

So far we have studied fluids at r est. The study
of the fluids in motion is known as fluid
dynamics. When a water -tap is tur ned on
slowly, the water flow is smooth initially, but
loses its smoothness when the speed of the
outflow is incr eased. In studying the motion of
fluids we focus our attention on what is
happening to various fluid particles at a
particular point in space at a particular time.
The flow of the fluid is said to be steady  if at
any given point, the velocity of each passing
fluid particle r emains constant in time. This
does not mean that the velocity at dif ferent
points in space is same. The velocity of a
particular particle may change as it moves fr om
one point to another . That is, at some other point
the particle may have a dif ferent velocity, but
every other particle which passes the second
point behaves exactly as the pr evious particle
that has just passed that point. Each particle
follows a smooth path, and the paths of the
particles do not cr oss each other .

Fig. 10.7 The meaning of str eamlines. (a) A typical
trajectory of a fluid particle.
(b) A region of str eamline flow.

The path taken by a fluid particle under a
steady flow is a str eamline . It is defined as a
curve whose tangent at any point is in the
dir ection of the fluid velocity at that point.
Consider the path of a particle as shown in
Fig.10.7 (a), the curve describes how a fluid
particle moves with time. The curve PQ is like a
permanent map of fluid flow, indicating how the
fluid str eams. No two str eamlines can cr oss,
for if they do, an oncoming fluid particle can go
either one way or the other and the flow would
not be steady. Hence, in steady flow, the map
of flow is stationary in time. How do we draw
closely spaced str eamlines ? If we intend to show
str eamline of every flowing particle, we would
end up with a continuum of lines. Consider
planes perpendicular to the dir ection of fluid flow
e.g., at thr ee points P , R and Q in Fig.10.7 (b).
The plane pieces ar e so chosen that their
boundaries be deter mined by the same set of
str eamlines. This means that number of fluid
particles cr ossing the sur faces as indicated at
P, R and Q is the same. If ar ea of cr oss-sections
at these points ar e AP,AR and AQ and speeds of
fluid particles ar e v

P
, v

R
 and v

Q
, then mass of

fluid ÄmP cr ossing at AP in a small interval of
time Ät  is r

P
A

P
v

P 
Ät . Similarly mass of fluid Äm

R
flowing or cr ossing at AR in a small interval of
time Ät is  r RARvR Ät  and mass of fluid  ÄmQ is
r

Q
A

Q
v

Q 
Ät  cr ossing at A

Q
. The mass of liquid

flowing out equals the mass flowing in, holds
in all cases. Ther efore,

r PAPvPÄt = r RARvRÄt = r QAQvQÄt (10.9)
For flow of incompr essible fluids
r P = r R = r Q

Equation (10.9) r educes to
APvP = ARvR = AQvQ (10.10)

which is called the equation of continuity  and
it is a statement of conservation of mass in flow
of incompr essible fluids. In general

Av  = constant (10.11)
Av gives the volume flux or flow rate and

r emains constant thr oughout the pipe of flow.
Thus, at narr ower portions wher e the
str eamlines ar e closely spaced, velocity
incr eases and its vice versa. Fr om (Fig 10.7b) it
is clear that A

R  
> A

Q 
or   v

R
 <  v

Q
, the fluid is

accelerated while passing fr om R to Q. This is
associated with a change in pr essur e in fluid
flow in horizontal pipes.

Steady flow is achieved at low flow speeds.
Beyond a limiting value, called critical speed,
this flow loses steadiness and becomes
turbulent . One sees this when a fast flowing
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str eam encounters r ocks, small foamy
whirlpool-like r egions called ‘white water rapids
are for med.

Figur e 10.8 displays str eamlines for some
typical flows. For example, Fig. 10.8(a) describes
a laminar flow wher e the velocities at dif ferent
points in the f luid may have dif fer ent
magnitudes but their dir ections ar e parallel.
Figur e 10.8 (b) gives a sketch of turbulent flow.

Fig. 10.8 (a) Some str eamlines for fluid flow.
(b) A jet of air striking a flat plate placed
perpendicular to it. This is an example of
turbulent flow.

10.4  BERNOULLI’S PRINCIPLE

Fluid flow is a complex phenomenon. But we
can obtain some useful pr operties for steady or
str eamline flows using the conservation of
energy.

Consider a fluid moving in a pipe of varying
cross-sectional ar ea. Let the pipe be at varying
heights as shown in Fig. 10.9. W e now suppose
that an incompr essible fluid is flowing thr ough
the pipe in a steady flow. Its velocity must
change as a consequence of equation of
continuity. A for ce is r equir ed to pr oduce this
acceleration, which is   caused by the fluid
surr ounding it, the pr essur e must be dif ferent
in dif ferent r egions. Ber noulli’s equation is a
general expr ession that r elates the pr essur e
dif ference between two points in a pipe to both
velocity changes (kinetic ener gy change) and
elevation (height) changes (potential ener gy

change). The Swiss Physicist Daniel Ber noulli
developed this r elationship in 1738.

Consider the flow at two r egions 1 (i.e. BC)
and 2 (i.e. DE). Consider the fluid initially lying
between B and D. In an infinitesimal time
interval Dt , this fluid would have moved.
Suppose v 1 is the speed at B and v2 at D, then
fluid initially at B has moved a distance v1Dt  to
C (v1Dt is small enough to assume constant
cross-section along BC). In the same interval Dt
the fluid initially at D moves to E, a distance
equal to v2Dt . Pressur es P1 and P2 act as shown
on the plane faces of ar eas A1 and A2 binding
the two r egions. The work done on the fluid at
left end (BC) is W1 = P1A1(v 1Dt) = P1DV. Since the
same volume DV passes thr ough both the
regions (fr om the equation of continuity) the
work done by the fluid at the other end (DE) is
W2 = P2A2(v2Dt) = P2DV or , the work done on the
fluid is  – P2DV. So the total work done on the
fluid is

W1 – W2 =  (P1-  P2) DV
Part of this work goes into changing the kinetic

energy of the fluid, and part goes into changing
the gravitational potential ener gy. If the density
of the fluid is r  and Dm = r A1v1Dt  = rDV is the
mass passing thr ough the pipe in time Dt , then
change in gravitational potential ener gy is

DU = r gDV (h 2 -  h1)
The change in its kinetic ener gy is

DK = 
1

2
� �
� �
� �

 r  DV (v2
2 -  v 1

2)

We can employ the work – ener gy theor em
(Chapter 6) to this volume of the fluid and this
yields

(P1-  P2) DV = 
1
2

� �
� �
� �

 r  DV (v2
2 -  v 1

2) + r gDV (h2 -  h1)

We now divide each ter m by DV to obtain

(P1-  P2) = 
1
2

� �
� �
� �

 r  (v 2
2 -  v1

2) + r g (h2 -  h1)

Daniel Ber noulli  was a Swiss scientist and mathematician who along with Leonar d
Euler had the distinction of winning the Fr ench Academy prize for mathematics
ten times. He also studied medicine and served as a pr ofessor of anatomy and
botany for a while at Basle, Switzerland. His most well known work was in
hydr odynamics, a subject he developed fr om a single principle: the conservation
of ener gy. His work included calculus, pr obability, the theory of vibrating strings,

and applied mathematics. He has been called the founder of mathematical physics.

Daniel Ber noulli (1700-1782)
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We can r earrange the above ter ms to obtain

P1 + 
1
2

� �
� �
� �

 r v1
2 + r gh1 = P2+ 

1
2

� �
� �
� �

 r v2
2 + r gh2

       (10.12)
This is Ber noulli’s equation . Since 1 and 2

refer to any two locations along the pipeline,
we may write the expr ession in general as

 P + 
1
2

� �
� �
� �

r v 2 + r gh = constant (10.13)

Fig. 10.9 The flow of an ideal fluid in a pipe of
varying cr oss section. The fluid in a
section of length v 1Dt moves to the section
of length v 2Dt in time Dt.

In wor ds, the Ber noulli’s r elation may be
stated as follows: As we move along a str eamline
the sum of the pr essur e (P), the kinetic ener gy

per unit volume 
2

2

v  r
     and the potential ener gy

per unit volume ( r gh) remains a constant.
Note that in applying the ener gy conservation

principle, ther e is an assumption that no ener gy
is lost due to friction. But in fact, when fluids
flow, some ener gy does get lost due to inter nal
friction. This arises due to the fact that in a
fluid flow, the dif ferent layers of the fluid flow
with dif fer ent velocities. These layers exert
frictional for ces on each other r esulting in a loss
of ener gy. This pr operty of the fluid is called
viscosity and is discussed in mor e detail in a
later section. The lost kinetic ener gy of the fluid
gets converted into heat ener gy. Thus,
Ber noulli’s equation ideally applies to fluids with
zero viscosity or non- viscous fluids. Another

r estriction on application of Ber noulli theor em
is that the fluids must be incompr essible, as
the elastic ener gy of the fluid is also not taken
into consideration. In practice, it has a lar ge
number of useful applications and can help
explain a wide variety of phenomena for low
viscosity incompr essible fluids.  Ber noulli’s
equation also does not hold for non-steady or
turbulent flows, because in that situation
velocity and pr essur e are constantly fluctuating
in time.

When a fluid is at r est i.e. its velocity is zer o
everywher e, Ber noulli’s equation becomes

P1 + r gh1 = P2 + r gh2

(P1-  P2) = r g (h 2 -  h1)

which is same as Eq. (10.6).

10.4.1 Speed of Ef flux: T orricelli’s Law

The wor d ef flux means fluid outflow. T orricelli
discover ed that the speed of ef flux fr om an open
tank is given by a for mula identical to that of a
fr eely falling body. Consider a tank containing
a liquid of density r  with a small hole in its side
at a height y 1 fr om the bottom (see Fig. 10.10).
The air above the liquid, whose sur face is at
height y 2,  is at pr essur e P. Fr om the equation
of continuity [Eq. (10.10)] we have

v 1 A1 = v 2 A2

v
A
A

v2
1

2
= 1

Fig. 10.10 Torricelli’s law. The speed of ef flux, v 1,
from the side of the container is given by
the application of Ber noulli’s equation.
If the container is open at the top to the
atmospher e then 1   2  hv g= .
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If the cr oss sectional ar ea of the tank A2 is
much lar ger than that of the hole ( A2 >>A1), then
we may take the fluid to be appr oximately at
rest at the top, i.e. v 2 = 0. Now applying the
Ber noulli equation at points 1 and 2 and noting
that at the hole P1 = Pa, the atmospheric
pr essur e, we have fr om Eq. (10.12)

2
1 1 2

1
2aP  v g y P g y             + r + r = + r

Taking  y 2 – y1 = h we have

( )2
2 a

1

P P
v g h     

-
= +

r
(10.14)

When P >>Pa and 2 g h may be ignor ed, the
speed of ef flux is deter mined by the container
pr essur e. Such a situation occurs in r ocket
pr opulsion. On the other hand if the tank is
open to the atmospher e, then P  = Pa and

hgv    21 = (10.15)

This is the speed of a fr eely falling body.
Equation (10.15) is known as Torricelli’s law .

10.4.2 Venturi-meter

The V enturi-meter is a device to measur e the
flow speed of incompr essible fluid. It consists
of a tube with a br oad diameter and a small
constriction at the middle as shown in
Fig. (10.11). A manometer in the for m of a
U-tube is also attached to it, with one ar m at
the br oad neck point of the tube and the other
at constriction as shown in Fig. (10.11). The
manometer contains a liquid of density r

m
. The

speed v
1 

of the liquid flowing thr ough the tube
at the br oad neck ar ea A is to be measur ed
fr om equation of continuity Eq. (10.10) the

speed at the constriction becomes 2 1v v=
A

a
.

Then using Ber noulli’s equation, we get

P1+ 
1

2
 r v 1

2 = P2+
1

2
 r v 1

2 (A/a )2

So that

P
1
- P

2
 = 

1
2

 r v
1

2 [
2

– 1
A
a

� �
� �
� �

] (10.16)

This pr essur e dif ference causes the fluid in
the U tube connected at the narr ow neck to rise
in comparison to the other ar m. The dif ference
in height h measur e the pr essur e dif ference.

P1– P2 = r mgh = 
1
2

 r v1
2 

2

– 1
A
a

� �� �
	 
� �
� �	 
� �

So that the speed of fluid at wide neck is

v1= 

–½22
–1m gh A

a

r
r

� �� � � �
� �� � � �� �� �� � � �

(10.17)

The principle behind this meter has many
applications. The carbur etor of automobile has
a Venturi channel (nozzle) thr ough which air
flows with a lar ge speed. The pr essur e is then
lower ed at the narr ow neck and the petr ol
(gasoline) is sucked up in the chamber to pr ovide
the corr ect mixtur e of air to fuel necessary for
combustion. Filter pumps or aspirators, Bunsen
bur ner, atomisers and sprayers [See Fig. 10.12]
used for per fumes or to spray insecticides work
on the same principle.

Fig. 10.12 The spray gun. Piston for ces air at high
speeds causing a lowering of pr essur e
at the neck of the container .

h

A
a

2
1

Fig. 10.11  A schematic diagram of V enturi-meter .
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Example 10.7  Blood velocity:  The flow
of blood in a lar ge artery of an anesthetised
dog is diverted thr ough a V enturi meter .
The wider part of the meter has a cr oss-
sectional ar ea equal to that of the artery.
A = 8 mm 2. The narr ower part has an ar ea
a = 4 mm 2. The pr essur e dr op in the artery
is 24 Pa. What is the speed of the blood in
the artery?

Answer  We take the density of blood fr om T able
10.1 to be 1.06 ´  10 3 kg m -3. The ratio of the

areas is 
A
a

� �
� �
� �

 = 2. Using Eq. (10.17) we obtain

( )
–1

1 –3 2

2 24
0.125 m s

1060 kg m 2 – 1

Pa
v

´
= =

´ t

10.4.3 Blood Flow and Heart Attack

Ber noulli’s principle helps in explaining blood
flow in artery. The artery may get constricted
due to the accumulation of plaque on its inner
walls. In or der to drive the blood thr ough this
constriction a gr eater demand is placed on the
activity of the heart. The speed of the flow of
the blood in this r egion is raised which lowers
the pr essur e inside and the artery may collapse
due to the exter nal pr essur e. The heart exerts
further pr essur e to open this artery and for ces
the blood thr ough. As the blood rushes thr ough
the opening, the inter nal pr essur e once again
dr ops due to same r easons leading to a r epeat
collapse. This may r esult in heart attack.

10.4.4 Dynamic Lift

Dynamic lift is the for ce that acts on a body,
such as airplane wing, a hydr ofoil or a spinning
ball, by virtue of its motion thr ough a fluid.  In
many games such as cricket, tennis, baseball,
or golf, we notice that a spinning ball deviates
fr om its parabolic trajectory as it moves thr ough
air . This deviation can be partly explained on
the basis of Ber noulli’s principle.
(i) Ball moving without spin : Fig. 10.13(a)

shows the str eamlines ar ound a non-
spinning ball  moving r elative to a fluid.
From the symmetry of str eamlines it is clear
that the velocity of fluid (air) above and below
the ball at corr esponding points is the same
r esulting in zer o pr essur e dif ference. The
air ther efore, exerts no upwar d or downwar d
for ce on the ball.

(ii) Ball moving with spin : A ball which is
spinning drags air along with it. If the
sur face is r ough mor e air will be dragged.
Fig 10.13(b) shows  the str eamlines of air
for a ball which is moving and spinning at
the same time. The ball is moving forwar d
and r elative to it the air is moving
backwar ds. Ther efore, the velocity of air
above the ball r elative to it is lar ger and
below it is smaller . The str eam lines thus
get cr owded above and rarified below.

This dif ference in the velocities of air r esults
in the pr essur e dif ference between the lower
and upper faces and there is a net upward force
on the ball. This dynamic lift due to spining is
called Magnus effect .

(a) (b) (c)

Fig 10.13 (a) Fluid str eaming past a static spher e. (b) Streamlines for a fluid ar ound a spher e spinning  clockwise.
(c) Air flowing past an aer ofoil.
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Aerofoil or lift on aircraft wing:  Figure 10.13
(c) shows an aer ofoil, which is a solid piece
shaped to pr ovide an upwar d dynamic lift when
it moves horizontally thr ough air . The cr oss-
section of the wings of an aer oplane looks
somewhat like the aer ofoil shown in Fig. 10.13 (c)
with str eamlines ar ound it. When the aer ofoil
moves against the wind, the orientation of the
wing r elative to flow dir ection causes the
str eamlines to cr owd together above the wing
mor e than those below it. The flow speed on
top is higher than that below it. Ther e is an
upwar d for ce r esulting in a dynamic lift of the
wings and this balances the weight of the plane.
The following example illustrates this.

Example 10.8  A fully loaded Boeing
air craft has a mass of 3.3 ´  10 5 kg. Its total
wing ar ea is 500 m 2. It is in level flight
with a speed of 960 km/h. (a) Estimate
the pr essur e dif ference between the lower
and upper sur faces of the wings (b)
Estimate the fractional incr ease in the
speed of the air on the upper sur face of
the wing r elative to the lower sur face. [The
density of air is r = 1.2 kg m -3]

Answer  (a) The weight of the Boeing air craft is
balanced by the upwar d for ce due to the
pr essur e dif ference
DP × A = 3.3 ´  105 kg ´  9.8

PD = (3.3 ´  10 5 kg ´  9.8 m s –2) / 500 m 2

      = 6.5 ´ 10 3 Nm -2

(b) We ignor e the small height dif fer ence
between the top and bottom sides in Eq. (10.12).
The pr essur e dif fer ence between them is
then

wher e v
2
 is the speed of air over the upper

sur face and v
1
 is the speed under the bottom

sur face.

( ) ( )2 1
2 1

2
–

P
v v

v v
D

=
r +

Taking the average speed
v

av
 = (v

2 
+ v

1
)/2 = 960 km/h = 267 m s -1,

we have

( )2 1 av 2
av

– /
P

v v v
v
D

=
r » 0.08

The speed above the wing needs to be only 8
% higher than that below. t

10.5  VISCOSITY

Most of the fluids ar e not ideal ones and of fer some
resistance to motion. This r esistance to fluid motion
is like an inter nal friction analogous to friction when
a solid moves on a sur face. It is called  viscosity.
This for ce exists when ther e is r elative motion
between layers of the liquid. Suppose we consider
a fluid  like oil  enclosed between two glass plates
as shown in Fig. 10.1 4 (a). The bottom plate is fixed
while the top plate  is moved with a constant
velocity v r elative to the fixed plate. If oil is
replaced by honey, a gr eater for ce is r equir ed
to move the plate with the same velocity. Hence
we say that honey is mor e viscous than oil. The
fluid in contact with a sur face has the same
velocity as that of the sur faces. Hence, the layer
of the liquid in contact with top sur face moves
with a velocity v and the layer of the liquid in
contact with the fixed sur face is stationary. The
velocities of layers incr ease unifor mly fr om
bottom (zer o velocity) to the top layer (velocity
v). For any layer of liquid, its upper layer pulls
it forwar d while lower layer pulls it backwar d.
This r esults in for ce between the layers. This
type of flow is known as laminar . The layers of
liquid slide over one another as the pages of a
book do when it is placed flat on a table and a
horizontal for ce is applied to the top cover . When
a fluid is flowing in a pipe or a tube, then
velocity of the liquid layer along the axis of the
tube is maximum and  decr eases  gradually as
we move towar ds the walls wher e it becomes
zer o, Fig. 10.14 (b). The velocity on a cylindrical
sur face in a tube is constant.

On account of this motion, a portion of liquid,
which at some instant has the shape ABCD,
take the shape of AEFD after short interval of
time ( Dt ). During this time interval the liquid
has under gone a shear strain of
Dx/ l.  Since, the strain in a flowing fluid
incr eases with time continuously. Unlike a solid,
her e the str ess is found experimentally to
depend on ‘rate of change of strain’ or ‘strain
rate’ i.e. Dx/( l Dt ) or v/ l instead of strain itself.
The coef ficient of viscosity (pr onounced ‘eta’) for
a fluid is defined as the ratio of shearing str ess
to the strain rate.

/
/

F A F l
v l v A

h = = (10.18)

The SI unit of viscosity is poiseiulle (Pl). Its
other units ar e N s m -2 or Pa s. The dimensions
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of viscosity are [ML -1T-1]. Generally thin liquids
like water , alcohol etc. ar e less viscous than
thick liquids like coal tar , blood, glycerin etc.
The coef ficients of viscosity for some common
fluids ar e listed in T able 10.2. W e point out two
facts about blood and water that you may find
inter esting. As T able 10.2 indicates, blood is
‘thicker’ (mor e viscous) than water . Further the
r elative viscosity ( h / hwater ) of blood r emains
constant between 0 oC and 37 oC.

The viscosity of liquids decr eases with
temperatur e while it incr eases in the case of
gases.

Example 10.9  A metal block of ar ea 0.10 m 2

is connected to a 0.010 kg mass via a string
that passes over an ideal pulley (consider ed
massless and frictionless), as in Fig. 10.15.
A liquid with a film thickness of 0.30 mm
is placed between the block and the table.

When r eleased the block moves to the right
with a constant speed of 0.085 m s -1. Find
the coef ficient of viscosity of the liquid.

Fig. 10.15 Measur ement of the coef ficient of
viscosity of a liquid.

Answer  The metal block moves to the right
because of the tension in the string. The tension
T is equal in magnitude to the weight of the
suspended mass m. Thus the shear for ce  F  is
F = T = mg  = 0.010 kg ´  9.8 m s –2 = 9.8 ´  10 -2 N

Shear str ess on the fluid = F/A  = 
–29.8 10

0.10

´

Strain rate = 
0.085
0.030

v
l

=

stress
strain rate

h =

 
( )( )

( )( )
–2 –3

–1 2

9.8 10 0.30 10

0.085 0.10

N m

m s m

´ ´
=

  = 3.45 ´ 10 -3 Pa s   t

Table10.2  The viscosities of some fluids

Fluid T(oC) Viscosity (mPl)

Water 20 1.0
100 0.3

Blood 37 2.7
Machine Oil 16 113

38 34
Glycerine 20 830
Honey 200
Air 0 0.017

40 0.019

10.5.1 Stokes’ Law

When a body falls thr ough a fluid it drags the
layer of the fluid in contact with it. A r elative

(a)

(b)

Fig 10.14 (a) A layer of liquid sandwiched between
two parallel glass plates in which the
lower plate is fixed and the upper one
is moving to the right with velocity v
(b) velocity distribution for viscous flow
in a pipe.
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motion between the different layers of the fluid
is set and as a r esult the body experiences a
r etar ding for ce. Falling of a raindr op and
swinging of a pendulum bob ar e some common
examples of such motion. It is seen that the
viscous for ce is pr oportional to the velocity of
the object and is opposite to the dir ection of
motion. The other quantities on which the for ce
F depends are viscosity h  of the fluid and radius
a of the sphere. Sir George G. Stokes (1819-
1903), an English scientist enunciated clearly
the viscous drag force F as

6F avh= p (10.19)

This is known as Stokes’ law.W e shall not
derive Stokes’ law.

This law is an inter esting example of r etar ding
for ce which is pr oportional to velocity. W e can
study its consequences on an object falling
thr ough a viscous  medium. W e consider a
raindr op in air . It accelerates initially due to
gravity. As the velocity incr eases, the r etar ding
for ce also incr eases. Finally when viscous for ce
plus buoyant for ce becomes equal to for ce due
to gravity, the net for ce becomes zer o and so
does the acceleration. The spher e (raindr op)
then descends with a constant velocity. Thus
in equilibrium, this ter minal velocity vt is given
by

6phavt  = (4p/3) a3 (r -s)g
wher e r  and s ar e mass densities of spher e and
the fluid r espectively. W e obtain

vt  = 2 a2 ( r -s )g / (9 h) (10.20)
So the ter minal velocity v t depends on the

squar e of the radius of the spher e and inversely
on the viscosity of the medium.

You may like to r efer back to Example 6.2 in
this context.

Example 10.10  The ter minal velocity of a
copper ball of radius 2.0 mm falling
thr ough a tank of oil at 20 oC is 6.5 cm s -1.
Compute the viscosity of the oil at 20 oC.
Density of oil is 1.5 ´ 10 3 kg m -3, density of
copper is 8.9 ´  10 3 kg m -3.

Answer  We have vt = 6.5 ´  10 -2 ms -1, a = 2 ´  10 -3 m,
g = 9.8 ms -2,  r  = 8.9 ´  10 3 kg m -3,
s =1.5 ´ 10 3 kg m -3. Fr om Eq. (10.20)

( )–3 2 –2

3 –3
–2 –1

2 10 m 9.8 m s2
7.4 10 kg m

9 6.5 10 m s

´ ´
h = ´ ´ ´

´

   =  9.9 ´  10 -1 kg m –1 s–1   t

10.6  REYNOLDS NUMBER

When the rate of flow of a fluid is lar ge, the flow
no longer r emain laminar , but becomes
turbulent. In a turbulent flow the velocity of
the fluids at any point in space varies rapidly
and randomly with time. Some cir cular motions
called eddies ar e also generated. An obstacle
placed in the path of a fast moving fluid causes
turbulence [Fig. 10.8 (b)]. The smoke rising fr om
a bur ning stack of wood, oceanic curr ents ar e
turbulent. Twinkling of stars is the r esult of
atmospheric turbulence. The wakes in the water
and in the air left by cars, aer oplanes and boats
are also turbulent.

Osbor ne Reynolds (1842-1912) observed that
turbulent flow is less likely for  viscous fluid
flowing at low rates.  He defined a dimensionless
number , whose value gives one an appr oximate
idea whether the flow would be turbulent . This
number is called the Reynolds  Re.

 Re = r vd / h (10.21)
wher e r  is the density of the fluid flowing  with
a speed   v, d  stands for the dimension of the
pipe, and h is the viscosity of the fluid. Re is a
dimensionless number and ther efore, it r emains
same in any system of units. It is found that
flow is str eamline or laminar for Re less than
1000. The flow is turbulent for Re > 2000.  The
flow becomes unsteady for Re between 1000 and
2000. The critical value of Re (known as critical
Reynolds number), at which turbulence sets, is
found to be the same for the geometrically
similar flows. For example when oil and water
with their dif ferent densities and viscosities, flow
in pipes of same shapes and sizes, turbulence
sets in  at almost the same value of Re.  Using
this fact a small scale laboratory model can be
set up to study the character of fluid flow. They
are useful in designing of   ships, submarines,
racing cars and aer oplanes.

Re can also be written as
Re = r v 2 / ( hv/ d ) = r Av 2 / ( hAv/d ) (10.22)
=  inertial for ce/for ce of viscosity.
Thus Re r epresents the ratio of inertial for ce

(force due to inertia i.e. mass of moving fluid or
due to inertia of obstacle in its path) to viscous
for ce.

Turbulence dissipates kinetic ener gy usually
in the for m of heat. Racing cars and planes ar e
engineer ed to pr ecision in or der to minimise
turbulence. The design of such vehicles involves
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experimentation and trial and error. On the
other hand turbulence (l ike fr ict ion) is
sometimes desirable. Turbulence promotes
mixing and increases the rates of transfer of
mass, momentum and energy. The blades of a
kitchen mixer induce turbulent flow and provide
thick milk shakes as well as beat eggs into a
uniform texture.

Example 10.11  The flow rate of water fr om
a tap of diameter 1.25 cm is 0.48 L/min.
The coef ficient of viscosity of water is
10 -3 Pa s. After sometime the flow rate is
incr eased to 3 L/min. Characterise the flow
for both the flow rates.

Answer  Let the speed of the flow be v and the
diameter of the tap be d  = 1.25 cm. The
volume of the water flowing out per second is

Q = v ´  p d2 / 4
v = 4 Q /  d2 p
We then estimate the Reynolds number to be

Re = 4 r  Q / p d  h
     = 4  ´103 kg m –3 ´  Q/(3.14 ´ 1.25 ´ 10-2 m ´10-3 Pa s)
    = 1.019 × 10 8 m –3 s Q
Since initially

Q = 0.48 L / min = 8 cm 3 / s = 8 ´  10 -6 m 3 s -1,
we obtain,

R
e
 = 815

Since this is below 1000, the flow is steady.
After some time when

Q = 3 L / min = 50 cm 3 / s = 5 ´  10 -5 m 3 s -1,
we obtain,

Re = 5095
The flow will be turbulent. Y ou may carry out

an experiment in your washbasin to deter mine
the transition fr om laminar to turbulent
flow. t

10.7  SURFACE TENSION

You must have noticed that, oil and water do
not mix; water wets you and me but not ducks;
mer cury does not wet glass but water sticks to
it, oil rises up a cotton wick, inspite of gravity,
Sap and water rise up to the top of the leaves of
the tr ee,  hairs of a paint brush do not cling
together when dry and even when dipped in
water but for m a fine tip when taken out of it.
All these and many mor e such experiences ar e
r elated with the fr ee sur faces of liquids. As

liquids have no definite shape but have a
definite volume, they acquire a free surface when
pour ed in a container . These sur faces  possess
some additional  energy. This phenomenon is
known as surface tension and it is concerned
with only liquid as gases do not have free
surfaces.  Let us now understand this
phenomena.

10.7.1 Surface Energy

A liquid stays together because of attraction
between molecules. Consider a molecule well
inside a liquid. The inter molecular distances ar e
such that it is attracted to all the surr ounding
molecules [Fig. 10.16(a)]. This attraction r esults
in a negative potential ener gy for the molecule,
which depends on the number and distribution
of molecules ar ound the chosen one. But the
average potential ener gy of all the molecules is
the same. This is supported by the fact that to
take a collection of such molecules (the liquid)
and to disperse them far away fr om each other
in or der to evaporate or vaporise, the heat of
evaporation r equir ed is quite lar ge. For water it
is of the or der of 40 kJ/mol.

Let us consider a molecule near the sur face
Fig. 10.16(b). Only lower half side of it is
surr ounded by liquid molecules. Ther e is some
negative potential ener gy due to these, but
obviously it is less than that of a molecule in
bulk, i.e., the one fully inside. Appr oximately it
is half of the latter . Thus, molecules on a liquid
sur face have some extra ener gy in comparison
to molecules in the interior .  A liquid thus tends
to have the least sur face ar ea which exter nal
conditions per mit. Incr easing sur face ar ea
requir es ener gy. Most sur face phenomenon can
be understood in ter ms of this fact. What is the
energy r equir ed for having a molecule at the
sur face? As mentioned above, r oughly it is half
the ener gy r equir ed to r emove it entir ely fr om
the liquid i.e., half the heat of evaporation.

Finally, what is a surface? Since a liquid consists
of molecules moving about, there cannot be a
perfectly sharp surface. The density of the liquid
molecules drops rapidly to zero around z = 0 as we
move along the direction indicated Fig 10.16 (c) in
a distance of the order of a few molecular sizes.
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10.7.2 Surface Energy and Surface Tension

As we have discussed that an extra ener gy is
associated with sur face of liquids, the cr eation
of mor e sur face (spr eading of sur face) keeping
other things l ike volume fixed r equir es
additional ener gy. T o appr eciate this, consider
a horizontal liquid film ending in bar fr ee to
slide over parallel guides Fig (10.17).

Fig. 10.17 Stretching a film. (a) A film in equilibrium;
(b) The film str etched an extra distance.

Suppose that we move the bar by a small
distance d as shown. Since the ar ea of the
sur face incr eases, the system now has mor e
energy, this means that some work has been
done against an inter nal for ce. Let this inter nal
for ce be F, the work done by the applied for ce is
F.d = Fd. Fr om conservation of ener gy, this is
stor ed as additional ener gy in the film. If the
sur face energy of the film is S per unit ar ea,
the extra ar ea is 2 dl . A film has two sides and
the liquid in between, so ther e are two sur faces
and the extra ener gy is

S (2 dl ) = Fd (10.23)
Or , S=Fd/2 dl  = F/2 l (10.24)
This quantity S is the magnitude of surface

tension. It is equal to the sur face ener gy per

unit ar ea of the liquid inter face and is also equal
to the for ce per unit length exerted by the fluid
on the movable bar .

So far we have talked about the sur face of
one liquid. Mor e generally, we need to consider
fluid sur face in contact with other fluids or solid
sur faces. The sur face ener gy in that case
depends on the materials on both sides of the
sur face. For example, if the molecules of the
materials attract each other , sur face energy is
r educed while if they r epel each other the
sur face ener gy is incr eased. Thus, mor e
appr opriately, the sur face ener gy is the ener gy
of the inter face between two materials and
depends on both of them.

We make the following observations fr om
above:
(i) Sur face tension is a for ce per unit length

(or sur face ener gy per unit ar ea) acting in
the plane of the inter face between the plane
of the liquid and any other substance; it also
is the extra ener gy that the molecules at
the inter face have as compar ed to molecules
in the interior .

(ii) At any point on the inter face besides the
boundary, we can draw a line and imagine
equal and opposite sur face tension for ces S
per unit length of the l ine acting
perpendicular to the line, in the plane of
the inter face. The line is in equilibrium. T o
be mor e specific, imagine a line of atoms or
molecules at the sur face. The atoms to the
left pull the line towar ds them; those to the
right pull it towar ds them! This line of atoms
is in equilibrium under tension. If the line
really marks the end of the inter face, as in

Fig. 10.16 Schematic pictur e of molecules in a liquid, at the sur face and balance of for ces. (a) Molecule
inside a liquid. For ces on a molecule due to others ar e shown. Dir ection of arr ows indicates
attraction of r epulsion. (b) Same, for a molecule at a sur face. (c) Balance of attractive (A) and
repulsive (R) for ces.
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Figur e 10.16 (a) and (b) ther e is only the
for ce S per unit length acting inwar ds.

Table 10.3 gives the sur face tension of various
liquids. The value of sur face tension depends
on temperatur e. Like viscosity, the sur face
tension of a l iquid usually fal ls with
temperatur e.

Table 10.3 Sur face tension of some liquids at
the temperatur es indicated with the
heats of the vaporisation

Liquid Temp ( oC) Sur face Heat of
Tension vaporisation
 (N/m)  (kJ/mol)

Helium –270 0.000239 0.115
Oxygen –183 0.0132 7.1
Ethanol 20 0.0227 40.6
Water 20 0.0727 44.16
Mer cury 20 0.4355 63.2

A fluid will stick to a solid sur face if the
sur face energy between fluid and the solid is
smaller than the sum of sur face ener gies
between solid-air , and fluid-air . Now ther e is
cohesion between the solid sur face and the
liquid. It  can be dir ectly measur ed
experimentaly as schematically shown in Fig.
10.18. A flat vertical glass plate, below which a
vessel of some liquid is kept, for ms one ar m of
the balance. The plate is balanced by weights
on the other side, with its horizontal edge just
over water . The vessel is raised slightly till the
liquid just touches the glass plate and pulls it
down a little because of sur face tension. W eights
are added till the plate just clears water .

Fig. 10.18  Measuring Sur face Tension.

Suppose the additional weight r equir ed is W.
Then from Eq. 10.24 and the discussion given
there, the surface tension of the liquid-air
inter face is

Sla = (W/2 l) = (mg /2 l) (10.25)
where m is the extra mass and l is the length of
the plate edge. The subscript (la) emphasises
the fact that the liquid-air inter face tension is
involved.

10.7.3 Angle of Contact

The sur face of liquid near the plane of contact,
with another medium is in general curved. The
angle between tangent to the liquid sur face at
the point of contact and solid sur face inside the
liquid is ter med as angle of contact. It is denoted
by q. It is dif ferent at inter faces of dif ferent pairs
of liquids and solids. The value of q deter mines
whether a liquid will spr ead on the sur face of a
solid or it will for m dr oplets on it. For example,
water for ms dr oplets on lotus leaf as shown in
Fig. 10.19 (a) while spr eads over a clean plastic
plate as shown in Fig. 10.19(b).

(a)

(b)
Fig. 10.19 Dif ferent shapes of water dr ops with

inter facial tensions (a) on a lotus leaf
(b) on a clean plastic plate.

We consider the thr ee inter facial tensions at
all the thr ee inter faces, liquid-air , solid-air and
solid-liquid denoted by S

la
, S

sa
 & S

sl 
r espectively

as given in Fig. 10.19 (a) and (b). A t the line of
contact, the surface forces between the three media
must be in equilibrium. From the Fig. 10.19(b) the
following r elation is easily derived.
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Sla  cos q  +  Ssl =  Ssa (10.26)
The angle of contact is an obtuse angle if

S
sl  

> S
la
 as in the case of water -leaf inter face

while it is an acute angle if Ssl  < Sla as in the
case of water -plastic inter face. When q is an
obtuse angle then molecules of liquids ar e
attracted str ongly to themselves and weakly to
those of solid, it costs a lot of ener gy to cr eate a
liquid-solid sur face, and liquid then does not
wet the solid. This is what happens with water
on a waxy or oily sur face, and with mer cury on
any sur face. On the other hand, if the molecules
of the liquid ar e str ongly attracted to those of
the solid, this will r educe Ssl and ther efore,
cos q may incr ease or q may decr ease. In this
case q is an acute angle. This is what happens
for water on glass or on plastic and for ker osene
oil on virtually anything (it just spr eads). Soaps,
deter gents and dying substances ar e wetting
agents. When they ar e added the angle of
contact becomes small so that these may
penetrate well and become ef fective. W ater
pr oofing agents on the other hand ar e added to
create a lar ge angle of contact between the water
and fibr es.

10.7.4 Dr ops and Bubbles

One consequence of sur face tension is that fr ee
liquid dr ops and bubbles ar e spherical if ef fects
of gravity can be neglected. Y ou must have seen
this especially clearly in small dr ops just for med
in a high-speed spray or jet, and in soap bubbles
blown by most of us in childhood. Why ar e dr ops
and bubbles spherical? What keeps soap
bubbles stable?

As we have been saying r epeatedly, a liquid-
air inter face has ener gy, so for a given volume
the sur face with minimum ener gy is the one
with the least ar ea. The spher e has this
pr operty. Though it is out of the scope of this
book, but you can check that a spher e is better
than at least a cube in this r espect! So, if gravity
and other for ces (e.g. air r esistance) wer e
inef fective, liquid dr ops would be spherical.

Another inter esting consequence of sur face
tension is that the pr essur e inside a spherical
dr op Fig. 10.20(a) is mor e than the pr essur e
outside. Suppose a spherical dr op of radius r is
in equilibrium. If its radius incr ease by Dr. The
extra surface energy is

[4p(r + Dr) 2 - 4 pr2] Sla = 8 pr Dr S la (10.27)

If the drop is in equilibrium this energy cost is
balanced by the energy gain due to
expansion under the pr essure dif ference (Pi – Po)
between the inside of the bubble and the
outside. The work done is

W = (Pi – Po) 4pr2Dr (10.28)
so that

(Pi – Po) = (2 Sla /  r) (10.29)
In general, for a liquid-gas inter face, the

convex side has a higher pr essur e than the
concave side. For example, an air bubble in a
liquid, would have higher pr essur e inside it.
See Fig 10.20 (b).

Fig. 10.20  Dr op, cavity and bubble of radius r .

A bubble Fig 10.20 (c) dif fers fr om a dr op
and a cavity; in this it has two inter faces.
Applying the above ar gument we have for a
bubble

 (Pi – Po) = (4 Sla/  r) (10.30)
This is pr obably why you have to blow har d,

but not too har d, to for m a soap bubble. A little
extra air pr essur e is needed inside!

10.7.5 Capillary Rise

One consequence of the pr essur e dif ference
acr oss a curved liquid-air inter face is the well-
known ef fect that water rises up in a narr ow
tube in spite of gravity. The wor d capilla means

Fig. 10.21 Capillary rise, (a) Schematic picture of a
narr ow tube immersed water .
(b) Enlar ged pictur e near inter face.
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hair in Latin; if the tube were hair thin, the rise
would be very large. To see this, consider a
vertical capillary tube of cir cular cr oss section
(radius a) inserted into an open vessel of water
(Fig. 10.21). The contact angle between water
and glass is acute. Thus the sur face of water in
the capillary is concave.  This means that
ther e is a pr essur e dif fer ence between the
two sides of the top sur face. This is given by

(Pi – Po) =(2S/ r) = 2S/( a sec q )
= (2S/ a) cos q (10.31)
Thus the pr essur e of the water inside the

tube, just at the meniscus (air -water inter face)
is less than the atmospheric pr essur e. Consider
the two points A and B in Fig. 10.21(a). They
must be at the same pr essur e, namely

P0 + h r g = P i = PA (10.32)
wher e rrrrr  is the density of water and h is called
the capillary rise  [Fig. 10.21(a)]. Using
Eq. (10.31) and (10.32) we have

h r g = (Pi – P0) = (2S cos q )/ a        (10.33)
The discussion her e, and the Eqs. (10.28) and

(10.29) make it clear that the capillary rise is
due to sur face tension. It is lar ger, for a smaller
a. Typically it is of the or der of a few cm for fine
capillaries. For example, if a  = 0.05 cm, using
the value of sur face tension for water (T able
10.3), we find that

h = 2S/( r g a)

  
( )

( ) ( ) ( )
– 1

3 –3 –2 – 4

2 0.073 Nm

10 kg m 9.8 m s 5 10 m

´
=

´

  = 2.98 ´  10 –2 m = 2.98 cm
Notice that if the liquid meniscus is convex,

as for mer cury, i.e., if cos  q is negative then
fr om Eq. (10.32) for example, it is clear that the
liquid will be lower in the capillary !

10.7.6 Deter gents and Sur face T ension

We clean dirty clothes containing gr ease and
oil stains sticking to cotton or other fabrics by
adding deter gents or soap to water , soaking
clothes in it and shaking. Let us understand
this pr ocess better .

Washing with water does not r emove gr ease
stains. This is because water does not wet gr easy
dirt; i.e., ther e is very little ar ea of contact
between them. If water could wet gr ease, the
flow of water could carry some grease away.
Something of this sort is achieved through
deter gents. The molecules of deter gents ar e

hairpin shaped, with one end attracted to water
and the other to molecules of gr ease, oil or wax,
thus tending to for m water -oil inter faces. The r esult
is shown in Fig. 10.22 as a sequence of figur es.

In our language, we would say that addition
of deter gents, whose molecules attract at one
end and say, oil on the other , reduces drastically
the sur face tension S (water -oil). It may even
become ener getically favourable to for m such
inter faces, i.e., globs of dirt surr ounded by
deter gents and then by water . This kind of
process using surface active detergents or
surfactants is important not only for cleaning,
but also in r ecovering oil, mineral or es etc.

Fig. 10.22 Deter gent action in ter ms of what
deter gent molecules do.

.
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t

Example 10.12  The lower end of a capillary
tube of diameter 2.00 mm is dipped 8.00
cm below the sur face of water in a beaker .
What is the pressure required in the tube
in order to blow a hemispherical bubble at
its end in water? The surface tension of
water at temperature of the experiments is
7.30 ×10 -2 Nm -1 .
1 atmospheric pr essur e = 1.01 × 10 5 Pa,
density of water = 1000 kg/m 3, g = 9.80 m  s-2.
Also calculate the excess pr essur e.

Answer  The excess pr essur e in a bubble of gas
in a liquid is given by 2 S/r , wher e S is the
sur face tension of the liquid-gas inter face. You
should note there is only one liquid surface in
this case. (For a bubble of liquid in a gas, ther e

are two liquid surfaces, so the formula for excess
pr essur e in that case is 4 S/r .) The radius of the
bubble is r . Now the pr essur e outside the bubble
Po equals atmospheric pr essur e plus the
pr essur e due to 8.00 cm of water column. That is

Po = (1.01 × 10 5 Pa + 0.08 m × 1000 kg m –3

    × 9.80 m s –2)
    = 1.01784 × 10 5 Pa

Therefor e, the pr essur e inside the bubble is
  Pi  = Po + 2S/r

= 1.01784 × 10 5 Pa + (2 × 7.3 × 10 -2 Pa m/10 -3 m)
= (1.01784 + 0.00146) × 10 5  Pa
= 1.02  × 10 5 Pa

wher e the radius of the bubble is taken to be
equal to the radius of the capillary tube, since
the bubble is hemispherical ! (The answer has
been rounded off to three significant figures.)
The excess pressure in the bubble is 146 Pa. t

SUMMARY

1. The basic pr operty of a fluid is that it can flow. The fluid does not have any
resistance to change of its shape. Thus, the shape of a fluid is gover ned by the
shape of its container .

2. A liquid is incompr essible and has a fr ee sur face of its own. A gas is compr essible
and it expands to occupy all the space available to it.

3. If F is the nor mal for ce exerted by a fluid on an ar ea A then the average pr essur e
Pav is defined as the ratio of the for ce to ar ea

A

F
Pav =

4. The unit of the pr essur e is the pascal (Pa). It is the same as N m -2 . Other common
units of pr essur e are
1 atm = 1.01×10 5  Pa
1 bar = 10 5  Pa
1 torr = 133 Pa = 0.133 kPa
1 mm of Hg = 1 torr = 133 Pa

5. Pascal’s law  states that: Pr essur e in a fluid at r est is same at all points which ar e
at the same height. A change in pr essur e applied to an enclosed fluid is
transmitted undiminished to every point of the fluid and the walls of the containing
vessel.

6. The pr essur e in a fluid varies with depth h accor ding to the expr ession
P = Pa + r gh
wher e  r  is the density of the fluid, assumed unifor m.

7. The volume of an incompr essible fluid passing any point every second in a pipe of
non unifor m cr ossection is the same in the steady flow.
v A = constant ( v is the velocity and A is the ar ea of cr ossection)
The equation is due to mass conservation in incompr essible fluid flow.

8. Bernoulli’s principle  states that as we move along a str eamline, the sum of the
pr essur e (P), the kinetic ener gy per unit volume ( r v2/2) and the potential ener gy per
unit volume ( r gy) remains a constant.
P + r v2 /2 + r gy = constant
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The equation is basically the conservation of energy applied to non viscuss fluid
motion in steady state. Ther e is no fluid which have zer o viscosity, so the above
statement is true only appr oximately. The viscosity is like friction and converts the
kinetic ener gy to heat ener gy.

9. Though shear strain in a fluid does not r equir e shear str ess, when a shear str ess is
applied to a fluid, the motion is generated which causes a shear strain gr owing
with time. The ratio of the shear str ess to the time rate of shearing strain is known
as coef ficient of viscosity, h .
wher e symbols have their usual meaning and ar e defined in the text.

10. Stokes’ law  states that the viscous drag for ce F  on a spher e of radius a moving with
velocity v  thr ough a fluid of viscosity is, F = – 6 phav .

11. The onset of turbulence in a fluid is deter mined by a dimensionless parameter is
called the Reynolds number  given by
Re = r vd / h
Wher e d is a typical geometrical length associated with the fluid flow and the other
symbols have their usual meaning.

12. Sur face tension is a for ce per unit length (or sur face ener gy per unit ar ea) acting in
the plane of inter face between the liquid and the bounding sur face. It is the extra
energy that the molecules at the inter face have as compar ed to the interior .

POINTS TO PONDER

1. Pressur e is a scalar quantity . The definition of the pr essur e as “for ce per unit ar ea”
may give one false impr ession that pr essur e is a vector . The “for ce” in the numerator
of the definition is the component of the for ce nor mal to the ar ea upon which it is
impr essed. While describing fluids as a conceptual shift fr om particle and rigid body
mechanics is r equir ed. We ar e concer ned with pr operties that vary fr om point to point
in the fluid.

2.  One should not think of pr essur e of a fluid as being exerted only on a solid like the
walls of a container or a piece of solid matter immersed in the fluid. Pr essur e exists at
all points in a fluid. An element of a fluid (such as the one shown in Fig. 10.2) is in
equilibrium because the pr essur es exerted on the various faces ar e equal.

3. The expr ession for pr essur e
P = Pa + r gh
holds true if fluid is incompr essible. Practically speaking it holds for liquids, which
are lar gely incompr essible and hence  is a constant with height.

4. The gauge pr essur e is the dif ference of the actual pr essur e and the atmospheric
pr essure.
P – Pa = Pg

Many pr essur e-measuring devices measur e the gauge pr essur e. These include the
tyr e pr essur e gauge and the blood pr essur e gauge (sphygmomanometer).

5. A str eamline is a map of fluid flow. In a steady flow two str eamlines do not intersect
as it means that the fluid particle will have two possible velocities at the point.

6. Ber noulli’s principal does not hold in pr esence of viscous drag on the fluid. The work
done by this dissipative viscous for ce must be taken into account in this case, and P2

[Fig. 10.9] will be lower than the value given by Eq. (10.12).
7. As the temperatur e rises the atoms of the liquid become mor e mobile and the coef ficient

of viscosity, h, falls. In a gas the temperatur e rise incr eases the random motion of
atoms and h incr eases.

8. The critical Reynolds number for the onset of turbulence is in the range 1000 to
10000, depending on the geometry of the flow. For most cases Re < 1000 signifies
laminar flow; 1000 < Re < 2000 is unsteady flow and Re > 2000 implies turbulent flow.

9. Sur face tension arises due to excess potential ener gy of the molecules on the sur face
in comparison to their potential ener gy in the interior . Such a sur face ener gy is pr esent
at the inter face separating two substances at least one of which is a fluid. It is not the
pr operty of a single fluid alone.
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EXERCISES

10.1 Explain why
(a) The blood pr essur e in humans is gr eater at the feet than at the brain
(b) Atmospheric pr essur e at a height of about 6 km decr eases to nearly half of

its value at the sea level, though the height of the atmospher e is mor e than
100 km

(c) Hydr ostatic pr essur e is a scalar quantity even though pr essur e is for ce
divided by ar ea.

10.2 Explain why
(a) The angle of contact of mer cury with glass is obtuse, while that of water

with glass is acute.
(b) Water on a clean glass sur face tends to spr ead out while mer cury on the

same sur face tends to for m dr ops. (Put dif ferently, water wets glass while
mer cury does not.)

(c) Sur face tension of a liquid is independent of the ar ea of the sur face
(d) Water with deter gent disolved in it should have small angles of contact.
(e) A dr op of liquid under no exter nal for ces is always spherical in shape

10.3 Fill in the blanks using the wor d(s) fr om the list appended   with each statement:
(a) Sur face tension of liquids generally . . . with temperatur es (incr eases /

decr eases)
(b) Viscosity of gases . . . with temperatur e, wher eas viscosity of   liquids  . . .  with

temperatur e (incr eases / decr eases)
(c) For solids with elastic modulus of rigidity, the shearing for ce is pr oportional

to . . . , while for fluids it is pr oportional to . . . (shear strain / rate of shear
strain)

(d) For a fluid in a steady flow, the incr ease in flow speed at a constriction follows
(conservation of mass / Ber noulli’s principle)

(e) For the model of  a plane in a wind tunnel, turbulence occurs at a ... speed for
turbulence for an actual plane (gr eater / smaller)

10.4 Explain why
(a) To keep a piece of paper horizontal, you should blow over , not under , it
(b) When we try to close a water tap with our fingers, fast jets of water gush

thr ough the openings between our fingers
(c) The size of the needle of a syringe contr ols flow rate better than the thumb

pr essur e exerted by a doctor while administering an injection
(d) A fluid flowing out of a small hole in a vessel r esults in a backwar d thrust on

the vessel
(e) A spinning cricket ball in air does not follow a parabolic trajectory

10.5 A 50 kg girl wearing high heel shoes balances on a single heel. The heel is cir cular
with a diameter 1.0 cm. What is the pressure exerted by the heel on the horizontal
floor ?
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10.6 Toricelli’s barometer used mercury. Pascal duplicated it using French wine of density
984 kg m –3. Deter mine the height of the wine column for nor mal atmospheric
pr essure.

10.7 A vertical of f-shor e structur e is built to withstand a maximum str ess of 10 9 Pa. Is
the structur e suitable for putting up on top of an oil well in the ocean ? T ake the
depth of the ocean to be r oughly 3 km, and ignor e ocean curr ents.

10.8 A hydraulic automobile lift is designed to lift cars with a maximum mass of 3000
kg. The ar ea of cr oss-section of the piston carrying the load is 425 cm 2. What
maximum pr essur e would the smaller piston have to bear ?

10.9 A U-tube contains water and methylated spirit separated by mer cury. The mer cury
columns in the two ar ms ar e in level with 10.0 cm of water in one ar m and 12.5 cm
of spirit in the other . What is the specific gravity of spirit ?

10.10 In the pr evious pr oblem, if 15.0 cm of water and spirit each ar e further pour ed into
the r espective ar ms of the tube, what is the dif ference in the levels of mer cury in
the two ar ms ? (Specific gravity of mer cury = 13.6)

10.11 Can Ber noulli’s equation be used to describe the flow of water thr ough a rapid in a
river ? Explain.

10.12 Does it matter if one uses gauge instead of absolute pr essur es in applying Ber noulli’s
equation ? Explain.

10.13 Glycerine flows steadily thr ough a horizontal tube of length 1.5 m and radius 1.0
cm. If the amount of glycerine collected per second at one end is 4.0 ´  10 –3 kg s –1,
what is the pr essur e dif ference between the two ends of the tube ? (Density of
glycerine = 1.3 ´  10 3 kg m –3 and viscosity of glycerine = 0.83 Pa s). [Y ou may also
like to check if the assumption of laminar flow in the tube is corr ect].

10.14 In a test experiment on a model aer oplane in a wind tunnel, the flow speeds on the
upper and lower sur faces of the wing ar e 70 m s –1and 63 m s -1 respectively. What is
the lift on the wing if its ar ea is 2.5 m 2  ? Take the density of air to be 1.3 kg m –3.

10.15 Figur es 10.23(a) and (b) r efer to the steady flow of a (non-viscous) liquid. Which of
the two figur es is incorr ect ? Why ?

Fig. 10.23

10.16 The cylindrical tube of a spray pump has a cr oss-section of 8.0 cm 2 one end of
which has 40 fine holes each of diameter 1.0 mm. If the liquid flow inside the tube
is 1.5 m min –1, what is the speed of ejection of the liquid thr ough the holes ?

10.17 A U-shaped wir e is dipped in a soap solution, and r emoved. The thin soap film
for med between the wir e and the light slider supports a weight of 1.5 ´  10 –2 N
(which includes the small weight of the slider). The length of the slider is 30 cm.
What is the sur face tension of the film ?

10.18 Figur e 10.24 (a) shows a thin liquid film supporting a small weight = 4.5 ´  10 –2 N.
What is the weight supported by a film of the same liquid at the same temperatur e
in Fig. (b) and (c) ? Explain your answer physically.
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Fig. 10.24

10.19 What is the pr essur e inside the dr op of mer cury of radius 3.00 mm at r oom
temperatur e ? Sur face  tension of mer cury  at that temperatur e  (20 °C) is 4.65 ´
10 –1 N m –1. The atmospheric pr essur e is 1.01 × 10 5 Pa. Also give the excess pr essur e
inside the dr op.

10.20 What is the excess pr essur e inside a bubble of soap solution of radius 5.00 mm,
given that the sur face tension of soap solution at the temperatur e (20 °C) is 2.50 ´
10 –2 N m –1 ? If an air bubble of the same dimension wer e for med at depth of 40.0
cm inside a container containing the soap solution (of r elative density 1.20), what
would be the pr essur e inside the bubble ? (1 atmospheric pr essur e is  1.01 ´ 10 5 Pa).

Additional Exer cises

10.21 A tank with a squar e base of ar ea 1.0 m 2 is divided by a vertical partition in the
middle. The bottom of the partition has a small-hinged door of ar ea 20 cm 2. The
tank is filled with water in one compartment, and an acid (of r elative density 1.7)
in the other , both to a height of 4.0 m. compute the for ce necessary to keep the
door close.

10.22 A manometer r eads the pr essur e of a gas in an enclosur e as shown in Fig. 10.25 (a)
When a pump r emoves some of the gas, the manometer r eads as in Fig. 10.25 (b)
The liquid used in the manometers is mer cury and the atmospheric pr essur e is 76
cm of mer cury.
(a) Give the absolute and gauge pr essur e of the gas in the enclosur e for cases (a)

and (b), in units of cm of mer cury.
(b) How would the levels change in case (b) if 13.6 cm of water (immiscible with

mer cury) ar e pour ed into the right limb of the manometer ? (Ignor e the small
change in the volume of the gas).

Fig. 10.25

10.23 Two vessels have the same base ar ea but dif ferent shapes. The first vessel takes
twice the volume of water that the second vessel r equir es to fill upto a particular
common height. Is the for ce exerted by the water on the base of the vessel the same
in the two cases ? If so, why do the vessels filled with water to that same height give
different readings on a weighing scale ?
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10.24 During blood transfusion the needle is inserted in a vein where the gauge pressure
is 2000 Pa. At what height must the blood container be placed so that blood may
just enter the vein ? [Use the density of whole blood fr om T able 10.1].

10.25 In deriving Ber noulli’s equation, we equated the work done on the fluid in the tube
to its change in the potential and kinetic ener gy. (a) What is the lar gest average
velocity of blood flow in an artery of diameter 2 ´  10 –3 m if the flow must r emain
laminar ?  (b) Do the dissipative for ces become mor e important as the fluid velocity
incr eases ? Discuss qualitatively.

10.26 (a) What is the lar gest average velocity of blood flow in an artery of radius 2×10 –3m
if the flow must r emain lanimar? (b) What is the corr esponding flow rate ? (T ake
viscosity of blood to be 2.084 ´ 10 –3 Pa s).

10.27 A plane is in level flight at constant speed and each of its two wings has an ar ea of
25 m 2. If the speed of the air is 180 km/h over the lower wing and 234 km/h over
the upper wing sur face, deter mine the plane’s mass. (T ake air density to be 1 kg
m–3).

10.28 In Millikan’s oil dr op experiment, what is the ter minal speed of an unchar ged dr op
of radius 2.0 ´  10 –5 m and density 1.2 ´  10 3 kg m –3. T ake the viscosity of air at the
temperatur e of the experiment to be 1.8 ´  10 –5 Pa s. How much is the viscous for ce
on the dr op at that speed ? Neglect buoyancy of the dr op due to air .

10.29 Mer cury has an angle of contact equal to 140° with soda lime glass. A narr ow tube
of radius 1.00 mm made of this glass is dipped in a tr ough containing mer cury. By
what amount does the mer cury dip down in the tube r elative to the liquid sur face
outside ? Sur face tension of mer cury at the temperatur e of the experiment is 0.465
N m –1. Density of mer cury = 13.6 ´  10 3 kg m –3.

10.30 Two  narr ow  bor es  of  diameters  3.0 mm and 6.0 mm  ar e joined together to for m
a U-tube open at both ends. If the U-tube contains water , what is the dif ference in
its levels in the two limbs of the tube ? Sur face tension of water at the temperatur e
of the experiment is 7.3 × 10 –2  N m –1. Take the angle of contact to be zer o and
density of water to be 1.0 ´  10 3 kg m –3 (g = 9.8 m s –2) .

Calculator/Computer – Based  Pr oblem

10.31 (a) It is known that density r  of air decr eases with height y as

0
oy/ye -r = r

where r 0 = 1.25 kg m –3 is the density at sea level, and y 0 is a constant. This density
variation is called the law of atmospher es. Obtain this law assuming that the
temperatur e of atmospher e remains a constant (isother mal conditions). Also assume
that the value of g remains constant.
(b) A lar ge He balloon of volume 1425 m 3  is used to lift a payload of 400 kg. Assume
that the balloon maintains constant radius as it rises. How high does it rise ?

[Take y 0 = 8000 m and r He = 0.18 kg m –3].
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APPENDIX 10.1 : WHA T IS BLOOD PRESSURE ?

In evolutionary history ther e occurr ed a time when animals started spending a significant amount
of time in the upright position. This placed a number of demands on the cir culatory system. The
venous system that r etur ns blood fr om the lower extr emities to the heart underwent changes. Y ou
will r ecall that veins ar e blood vessels thr ough which blood r etur ns to the heart. Humans and
animals such as the giraf fe have adapted to the pr oblem of moving blood upwar d against gravity.
But animals such as snakes, rats and rabbits will die if held upwar ds, since the blood r emains in
the lower extr emities and the venous system is unable to move it towar ds the heart.

Fig. 10.26 Schematic view of the gauge pr essur es in the arteries in various parts of the human body while
standing or lying down. The pr essur es shown ar e averaged over a heart cycle.

Figur e 10.26 shows the average pr essur es observed in the arteries at various points in the human body.
Since viscous ef fects ar e small, we can use Ber noulli’s equation, Eq. (10.13),

21
Constant

2
P v gy+ r + r =

to understand these pr essur e values. The kinetic ener gy ter m ( r v2/2) can be ignor ed since the velocities in
the thr ee arteries ar e small ( » 0.1 m s –1) and almost constant. Hence the gauge pr essur es at the brain PB,
the heart  PH, and the foot PF ar e related by

PF = PH +  r  g hH = PB + r  g hB (10.34)

wher e r  is the density of blood.
Typical values of the heights to the heart and the brain ar e h H = 1.3 m and h B = 1.7 m. T aking
r  = 1.06 ´  10 3 kg m –3 we obtain that PF  = 26.8 kPa (kilopascals) and  PB = 9.3 kPa given that PH = 13.3 kPa.
Thus the pr essur es in the lower and upper parts of the body ar e so dif ferent when a person is standing,
but ar e almost equal when he is lying down. As mentioned in the text the units for pr essur e mor e
commonly employed in medicine and physiology ar e torr and mm of Hg. 1 mm of Hg = 1 torr = 0.133 kPa.
Thus the average pr essur e at the heart is PH = 13.3 kPa = 100 mm of Hg.

The human body is a marvel of natur e. The veins in the lower extr emities ar e equipped with valves,
which open when blood flows towar ds the heart and close if it tends to drain down. Also, blood is r etur ned
at least partially by the pumping action associated with br eathing and by the flexing of the skeletal muscles
during walking. This explains why a soldier who is r equir ed to stand at attention may faint because of
insuf ficient r etur n of the blood to the heart. Once he is made to lie down, the pr essur es become equalized
and he r egains consciousness.

An instrument called the sphygmomanometer usually measur es the blood pr essur e of humans. It is a
fast, painless and non-invasive technique and gives the doctor a r eliable idea about the patient’s health.
The measur ement pr ocess is shown in Fig. 10.27. Ther e are two r easons why the upper ar m is used. First,
it is at the same level as the heart and measur ements her e give values close to that at the heart. Secondly,
the upper ar m contains a single bone and makes the artery ther e (called the brachial artery) easy to
compr ess. We have all measur ed pulse rates by placing our fingers over the wrist. Each pulse takes a little
less than a second. During each pulse the pr essur e in the heart and  the  cir culatory  system goes thr ough a
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maximum as the blood is pumped by the heart  (systolic  pr essur e) and a minimum as the heart r elaxes
(diastolic pr essur e). The sphygmomanometer is a device, which measur es these extr eme pr essur es. It
works on the principle that blood flow in the brachial (upper ar m) artery can be made to go fr om
laminar to turbulent by suitable compr ession. Turbulent flow is dissipative, and its sound can be
picked up on the stethoscope .

The gauge pr essur e in an air sack wrapped ar ound the upper ar m is measur ed using a manometer or a
dial pr essur e gauge (Fig. 10.27). The pr essur e in the sack is first incr eased till the brachial artery is closed.
The pr essur e in the sack is then slowly r educed while a stethoscope placed just below the sack is used to
listen to noises arising in the brachial artery. When
the pr essur e is just below the systolic  (peak)
pr essur e, the artery opens briefly. During this brief
period, the blood velocity in the highly constricted
artery is high and turbulent and hence noisy. The
resulting noise is hear d as a tapping sound  on the
stethoscope. When the pr essur e in the sack is
lower ed further , the artery r emains open for a longer
portion of the heart cycle. Nevertheless, it r emains
closed during the diastolic (minimum pr essur e)
phase of the heartbeat. Thus the duration of the
tapping sound is longer . When the pr essur e in the
sack r eaches the diastolic pr essur e the artery is
open during the entir e heart cycle. The flow is
however , still turbulent and noisy. But instead of a
tapping sound we hear a steady, continuous r oar
on the stethoscope.

The blood pr essur e of a patient is pr esented as the ratio of systolic/diastolic pr essur es. For a r esting
healthy adult it is typically 120/80 mm of Hg (120/80 torr). Pr essur es above 140/90 r equir e medical
attention and advice. High blood pr essur es may seriously damage the heart, kidney and other or gans and
must be contr olled.

Fig. 10.2 7 Blood pr essur e measur ement using the
sphygmomanometer and stethoscope.


