संख्या पद्धतियाँ

(A) मुख्य अवधारणाएँ और परिणाम

- परिमेय संख्याएँ
- अपरिमेय संख्याएँ
- संख्या रेखा पर अपरिमेय संख्याएँ निर्धारित करना
- वास्तविक संख्याएँ और उनके दशमलव प्रसार
- संख्या रेखा पर वास्तविक संख्याओं का निरूपण
- वास्तविक संख्याओं पर सीधरें
- हर का परिमेयीकरण

वास्तविक संख्याओं के लिए घातांकों के नियम

- एक संख्या परिमेय संख्या कहलाती है, यदि उसे \(\frac{p}{q} \) के रूप में लिखा जा सके, जहाँ \(p \) और \(q \) पूर्णाक हैं तथा \(q \neq 0 \) है।

- एक संख्या जिजिसे \(\frac{p}{q} \) के रूप में न लिखा जा सके (जहाँ \(p \) और \(q \) पूर्णाक हैं तथा \(q \neq 0 \) है) अपरिमेय संख्या कहलाती है।

- सभी परिमेय संख्याओं और अपरिमेय संख्याओं को मिलाकर वास्तविक संख्याओं का संग्रह कहा जाता है।

- एक परिमेय संख्या का दशमलव प्रसार सांत या असांत आवर्ती होता है तथा एक अपरिमेय संख्या का दशमलव प्रसार असांत अनावर्ती होता है।
यदि \(r \) एक परिमेय संख्या है और \(s \) एक अपरिमेय संख्या है तो \(r + s \) और \(r - s \) अपरिमेय संख्याओं होती हैं। साथ ही, यदि \(r \) एक शून्यता परिमेय संख्या हो तो \(rs \) और \(\frac{r}{s} \) अपरिमेय संख्याओं होती हैं।

• धनात्मक वास्तविक संख्याओं \(a \) और \(b \) के लिए:

\[
\begin{align*}
(i) \quad \sqrt{ab} &= \sqrt{a}\sqrt{b} \\
(ii) \quad \sqrt{a} = \frac{\sqrt{a^2}}{\sqrt{b}} \\
(iii) \quad (\sqrt{a} + \sqrt{b})(\sqrt{a} - \sqrt{b}) &= a - b \\
(iv) \quad (a + \sqrt{b})(a - \sqrt{b}) &= a^2 - b \\
(v) \quad (\sqrt{a} + \sqrt{b})^2 &= a + 2\sqrt{ab} + b
\end{align*}
\]

• यदि \(p \) और \(q \) परिमेय संख्याएँ तथा \(a \) एक धनात्मक वास्तविक संख्या है, तो

\[
\begin{align*}
(i) \quad a^p a^q &= a^{p+q} \\
(ii) \quad (a^p)^q &= a^{pq} \\
(iii) \quad \frac{a^p}{a^q} &= a^{p-q} \\
(iv) \quad a^{p^q} &= (ab)^p
\end{align*}
\]

(\text{B) बहु विकल्पीय प्रश्न}

सही उत्तर लिखिए –

प्रतिवर्ष प्रश्न 1: निम्नलिखित में से कोन [\(\left(\frac{5}{6}\right)^{1/6}\)] के बराबर नहीं है?

\[
\begin{align*}
\text{(A)} \quad \left(\frac{5}{6}\right)^{1/6} & \quad \text{(B)} \quad \left[\left(\frac{5}{6}\right)^{1/5}\right]^6 \\
\text{(C)} \quad \left(\frac{6}{5}\right)^{1/30} & \quad \text{(D)} \quad \left(\frac{5}{6}\right)^{1/30}
\end{align*}
\]

हल : उत्तर (A)

प्रश्नावली 1.1

निम्नलिखित में से प्रत्येक में सही उत्तर लिखिए –

1. प्रत्येक परिमेय संख्या है:

\[
\begin{align*}
\text{(A)} \quad \text{एक प्राकृत संख्या} & \quad \text{(B)} \quad \text{एक पूर्णाक} \\
\text{(C)} \quad \text{एक वास्तविक संख्या} & \quad \text{(D)} \quad \text{एक पूर्ण संख्या}
\end{align*}
\]
2. दो परिमेय संख्याओं के बीच में :
(A) कोई परिमेय संख्या नहीं होती
(B) ठीक एक परिमेय संख्या होती है
(C) अपरिमेय रूप से अनेक परिमेय संख्याएँ होती हैं
(D) केवल परिमेय संख्याएँ होती हैं तथा कोई अपरिमेय संख्या नहीं होती

3. एक परिमेय संख्या का दशमलव निरूपण नहीं हो सकता :
(A) सात
(B) असात
(C) असात आवश्यक
(D) असात अनावश्यक

4. किन्हीं दो अपरिमेय संख्याओं का गुणनफल होता है :
(A) सदैव एक अपरिमेय संख्या
(B) सदैव एक परिमेय संख्या
(C) सदैव एक पूर्णांक
(D) कभी परिमेय संख्या, कभी अपरिमेय संख्या

5. संख्या $\sqrt{2}$ का दशमलव प्रसार है :
(A) एक परिमेय दशमलव
(B) 1.41421
(C) असात आवश्यक
(D) असात अनावश्यक

6. निम्नलिखित में से कौन सी एक अपरिमेय संख्या है?
(A) $\sqrt[4]{9}$ (B) $\frac{\sqrt{12}}{\sqrt{3}}$ (C) $\sqrt{7}$ (D) $\sqrt{81}$

7. निम्नलिखित में से कौन सी एक अपरिमेय संख्या है?
(A) 0.14 (B) 0.1416 (C) 0.1416 (D) 0.4014001400014...

8. $\sqrt{2}$ और $\sqrt{3}$ के बीच एक परिमेय संख्या है :
(A) $\frac{\sqrt{2}+\sqrt{3}}{2}$ (B) $\frac{\sqrt{2}\times\sqrt{3}}{2}$ (C) 1.5 (D) 1.8
9. \(\frac{p}{q} \) के रूप में 1.999... का मान, जहाँ \(p \) और \(q \) पूर्णांक हैं तथा \(q \neq 0 \), होगा :

(A) \(\frac{19}{10} \) (B) \(\frac{1999}{1000} \) (C) 2 (D) \(\frac{1}{9} \)

10. \(2\sqrt{3} + \sqrt{3} \) बराबर है :

(A) \(2\sqrt{6} \) (B) 6 (C) \(3\sqrt{3} \) (D) \(4\sqrt{6} \)

11. \(\sqrt{10} \times \sqrt{15} \) बराबर है :

(A) \(6\sqrt{5} \) (B) \(5\sqrt{6} \) (C) \(\sqrt{25} \) (D) \(10\sqrt{5} \)

12. \(\frac{1}{\sqrt{7} - 2} \) के हर का परिमेयीकरण करने पर प्राप्त संख्या है :

(A) \(\frac{\sqrt{7} + 2}{3} \) (B) \(\frac{\sqrt{7} - 2}{3} \) (C) \(\frac{\sqrt{7} + 2}{5} \) (D) \(\frac{\sqrt{7} + 2}{45} \)

13. \(\frac{1}{\sqrt{6} - \sqrt{8}} \) बराबर है :

(A) \(\frac{1}{2} (3 - 2\sqrt{2}) \) (B) \(\frac{1}{3 + 2\sqrt{2}} \) (C) \(3 - 2\sqrt{2} \) (D) \(3 + 2\sqrt{2} \)

14. \(\frac{7}{3\sqrt{3} - 2\sqrt{2}} \) के हर का परिमेयीकरण करने पर, हमें प्राप्त हर है :

(A) 13 (B) 19 (C) 5 (D) 35

15. \(\frac{\sqrt{32} + \sqrt{48}}{\sqrt{8} + \sqrt{12}} \) का मान बराबर है :

(A) \(\sqrt{2} \) (B) 2 (C) 4 (D) 8

16. यदि \(\sqrt{2} = 1.4142 \) है, तो \(\frac{\sqrt{2} - 1}{\sqrt{2} + 1} \) बराबर है :
संख्या पद्धतियाँ

17. \(\sqrt[3]{2} \) बराबर है :

(A) \(2^{\frac{1}{6}} \) (B) \(2^{-6} \) (C) \(\frac{1}{2^6} \) (D) \(2^6 \)

18. गुणफल \(\sqrt{2} \times \frac{\sqrt{2}}{3} \times 3^{\frac{2}{3}} \) बराबर है :

(A) \(\sqrt{2} \) (B) \(2 \) (C) \(\frac{12}{2} \) (D) \(\frac{12}{32} \)

19. \(\sqrt{(81)^2} \) का मान है :

(A) \(\frac{1}{9} \) (B) \(\frac{1}{3} \) (C) \(9 \) (D) \(\frac{1}{81} \)

20. \((256)^{0.16} \times (256)^{0.09} \) का मान है :

(A) \(4 \) (B) \(16 \) (C) \(64 \) (D) \(256.25 \)

21. निम्नलिखित में से कौन एक के बराबर है?

(A) \(\frac{12}{x^7} - \frac{5}{x^7} \) (B) \(\frac{12}{\left(x^4\right)^{\frac{1}{3}}} \) (C) \(\left(x^3\right)^{\frac{2}{3}} \) (D) \(\frac{12}{x^7} \times x^{\frac{7}{12}} \)

(क) तर्क के साथ संख्यात्मक उत्तरीय प्रश्न

प्रतिदर्श प्रश्न 1: क्या ऐसी दो अपरिमेय संख्याएं हैं जिनका योग और गुणनफल दोनों ही परिमेय संख्याएं हैं? अपने उत्तर का ओवरली दीजिए।

हलः हाँ

\(3 + \sqrt{2} \) और \(3 - \sqrt{2} \) दो अपरिमेय संख्याएं हैं।

\((3 + \sqrt{2}) + (3 - \sqrt{2}) = 6 \), एक परिमेय संख्या

\((3 + \sqrt{2})(3 - \sqrt{2}) = 7 \), एक परिमेय संख्या

अतः हमें दो ऐसी परिमेय संख्याएं प्राप्त हैं, जिनका योग और गुणनफल दोनों ही परिमेय संख्याएं हैं।

प्रतिदर्श प्रश्न 2: बताइए कि निम्नलिखित कथन सत्य है या असत्यः एक संख्या \(x \) ऐसी है कि \(x^2 \) अपरिमेय है परंतु \(x^4 \) परिमेय है। एक उदाहरण की सहायता से अपने उत्तर का ओवरली दीजिए।
हल: सत्य है।
आइए, \(x = \sqrt{2} \) ले।

अब,

\[
x^2 = (\sqrt{2})^2 = 2 \quad \text{एक अपरिमेय संख्या}
\]

\[
x^4 = (\sqrt{2})^4 = 2 \quad \text{एक परिमेय संख्या}
\]

अतः, हमें एक संख्या \(x \) ऐसी प्राप्त है कि \(x^2 \) अपरिमेय है तथा \(x^4 \) परिमेय है।

प्रश्नावली 1.2

1. मान लीजिए कि \(x \) और \(y \) क्रमशः परिमेय और अपरिमेय संख्याएँ हैं। क्या \(x + y \) आकर्षक रूप से एक अपरिमेय संख्या है? अपने उत्तर की पुष्टि के लिए एक उदाहरण दीजिए।

2. मान लीजिए कि \(x \) एक परिमेय संख्या है और \(y \) एक अपरिमेय संख्या है। क्या \(xy \) आकर्षक रूप से एक अपरिमेय संख्या है? एक उदाहरण द्वारा अपने उत्तर का आकर्षक दीजिए।

3. बताइए कि निम्नलिखित कथन सत्य है या असत्य। अपने उत्तर का आकर्षक दीजिए।

 (i) \(\frac{\sqrt{2}}{3} \) एक परिमेय संख्या है।
 (ii) किन्हीं दो पूर्णांकों के बीच अपरिमेय रूप से अनेक पूर्णांक हैं।
 (iii) 15 और 18 के बीच में परिमेय संख्याओं की संख्या परिमित है।
 (iv) कुछ संख्याएँ ऐसी हैं कि जिन्हें \(\frac{p}{q} \), \(q \neq 0 \) के रूप में नहीं लिखा जा सकता, जहाँ \(p \) और \(q \) दोनों पूर्णांक हैं।
 (v) एक अपरिमेय संख्या का वर्ग सदैव एक परिमेय संख्या होती है।
 (vi) \(\frac{\sqrt{12}}{\sqrt{3}} \) एक परिमेय संख्या नहीं है, क्योंकि \(\sqrt{12} \) और \(\sqrt{3} \) पूर्णांक नहीं हैं।
 (vii) \(\frac{\sqrt{15}}{\sqrt{3}}, \frac{p}{q}, q \neq 0 \) के रूप में लिखा है, इसलिए यह एक परिमेय संख्या है।

4. आकर्ष किये दूर, निम्नलिखित को परिमेय या अपरिमेय संख्याओं के रूप में वर्गीकृत कीजिए:

 (i) \(\sqrt{196} \) (ii) \(3\sqrt{18} \) (iii) \(\frac{9}{\sqrt{27}} \) (iv) \(\frac{28}{\sqrt{343}} \)
(D) संक्षिप्त उत्तरीय प्रश्न

प्रतिवर्ण प्रश्न 1: संख्या रेखा पर $\sqrt{13}$ निर्धारित कीजिए।

हल: हम 13 को दो प्राकृतिक संख्याओं के योग के रूप में लिखते हैं:

$$13 = 9 + 4 = 3^2 + 2^2$$

संख्या रेखा पर, $OA = 3$ मात्रक (इकाइ) लीजिए। OA पर एक लंब $BA = 2$ मात्रक खींचिए। OB को मिलाए (देखिए आकृति 1.1).

पाइथागोरस प्रमेय से, $OB = \sqrt{13}$ है।

परिकार का योग करते हुए, केंद्र O और निर्देश OB लेकर, एक चाप खींचिए जो संख्या रेखा को बिंदु C पर प्रतिच्छेद दर्शाता है। तब, बिंदु C ही $\sqrt{13}$ के समता है।

प्रतिवर्ण प्रश्न 2: $0.12\overline{3}$ को $\frac{p}{q}$ के रूप में व्यक्त कीजिए, जहाँ p और q पूर्णक हैं तथा $q \neq 0$ है।

हल:

मान लीजिए कि $x = 0.12\overline{3}$

ःः $\quad 10x = 1.2\overline{3}$

या $\quad 10x - x = 1.2\overline{3} - 0.12\overline{3}$

$\quad 9x = 1.2333... - 0.12333...$

अर्थात, $\quad 9x = 1.11$

या $\quad x = \frac{1.11}{9} = \frac{111}{900}$

ःः $\quad 0.12\overline{3} = \frac{111}{900} = \frac{37}{300}$

16-04-2018
प्रतिदर्श प्रश्न 3: सरल कीजिए : \((3\sqrt{5} - 5\sqrt{2})(4\sqrt{5} + 3\sqrt{2})\)

हल: \((3\sqrt{5} - 5\sqrt{2})(4\sqrt{5} + 3\sqrt{2})\)

\[
= 12\times 5 - 20\sqrt{2}\times \sqrt{5} + 9\sqrt{5}\times \sqrt{2} - 15\times 2 \\
= 60 - 20\sqrt{10} + 9\sqrt{10} - 30 \\
= 30 - 11\sqrt{10}
\]

प्रतिदर्श प्रश्न 4: निम्नलिखित में \(a\) का मान ज्ञात कीजिए :

\[
\frac{6}{3\sqrt{2} - 2\sqrt{3}} = 3\sqrt{2} - a\sqrt{3}
\]

हल:

\[
\frac{6}{3\sqrt{2} - 2\sqrt{3}} = \frac{6 \times 3\sqrt{2} + 2\sqrt{3}}{3\sqrt{2} - 2\sqrt{3}}
\]

\[
= \frac{6(3\sqrt{2} + 2\sqrt{3})}{(3\sqrt{2})^2 - (2\sqrt{3})^2} = \frac{6(3\sqrt{2} + 2\sqrt{3})}{18 - 12} = \frac{6(3\sqrt{2} + 2\sqrt{3})}{6}
\]

\[
= 3\sqrt{2} + 2\sqrt{3}
\]

अतः, \(3\sqrt{2} + 2\sqrt{3} = 3\sqrt{2} - a\sqrt{3}\)

इसलिए, \(a = -2\)

प्रतिदर्श प्रश्न 5: सरल कीजिए : \[\left[\frac{1}{5} \left(\frac{1}{8^3} + \frac{1}{27^3} \right) \right]^{\frac{1}{4}}\]

हल:

\[
\left[\frac{1}{5} \left(\frac{1}{8^3} + \frac{1}{27^3} \right) \right]^{\frac{1}{4}} = \left[\frac{1}{5} \left(\frac{1}{(2^3)^3} + \frac{1}{(3^3)^3} \right) \right]^{\frac{1}{4}}
\]

\[
= \left[\frac{1}{5} \left(\frac{1}{2^9} + \frac{1}{3^9} \right) \right]^{\frac{1}{4}}
\]
नमूना 1.3

1. ज्ञात कीजिए कि कौन से चर \(x, y, z \) और \(u \) परिमेय संख्याएँ निरूपित करते हैं तथा कौन से चर अपरिमेय संख्याएँ निरूपित करते हैं :

 (i) \(x^2 = 5 \) (ii) \(y^2 = 9 \) (iii) \(z^2 = .04 \) (iv) \(u^2 = \frac{17}{4} \)

2. निम्नलिखित के बीच में तीन परिमेय संख्याएँ ज्ञात कीजिए :

 (i) \(-1 \) और \(-2\) (ii) \(0.1 \) और \(0.11\)
 (iii) \(\frac{5}{7} \) और \(\frac{6}{7}\) (iv) \(\frac{1}{4} \) और \(\frac{1}{5}\)

3. निम्नलिखित के बीच में एक परिमेय संख्या और एक अपरिमेय संख्या प्रविष्ट कीजिए :

 (i) \(2 \) और \(3\) (ii) \(0 \) और \(0.1\) (iii) \(\frac{1}{3} \) और \(\frac{1}{2}\)
 (iv) \(\frac{-2}{5} \) और \(\frac{1}{2}\) (v) \(0.15 \) और \(0.16\) (vi) \(\sqrt{2} \) और \(\sqrt{3}\)
 (vii) \(2.357 \) और \(3.121\) (viii) \(.0001 \) और \(.001\) (ix) \(3.623623 \) और \(0.484848\)
 (x) \(6.375289 \) और \(6.375738\)

4. निम्नलिखित संख्याओं को संख्या रेखा पर निरूपित कीजिए :

 \(7, 7.2, -3, -\frac{12}{5}\)

5. संख्या रेखा पर \(\sqrt{5}, \sqrt{10}\) और \(\sqrt{17}\) को निर्धारित कीजिए।

6. संख्या रेखा पर निम्नलिखित संख्याओं को ज्यामितीय रूप से निरूपित कीजिए :

 (i) \(\sqrt{4.5}\) (ii) \(\sqrt{5.6}\) (iii) \(\sqrt{8.1}\) (iv) \(\sqrt{2.3}\)
7. निम्नलिखित को \(\frac{p}{q} \) के रूप में व्यक्त कीजिए, जहाँ \(p \) और \(q \) पूर्णक हैं तथा \(q \neq 0 \) हैः

(i) 0.2 (ii) 0.888... (iii) 5.2 (iv) 0.001
(v) 0.2555... (vi) 0.134 (vii) .00323232... (viii) .404040...

8. दर्शाइए कि 0.142857142857... = \(\frac{1}{7} \) है।

9. निम्नलिखित को सरल कीजिएः

(i) \(\sqrt{45} - 3\sqrt{20} + 4\sqrt{5} \)
(ii) \(\frac{\sqrt{24} + \sqrt{54}}{8} + \frac{\sqrt{9}}{9} \)
(iii) \(4\sqrt{12} \times 7\sqrt{6} \)
(iv) \(4\sqrt{28} \div 3\sqrt{7} \)
(v) \(3\sqrt{3} + 2\sqrt{27} + \frac{7}{\sqrt{3}} \)
(vi) \((\sqrt{3} - \sqrt{2})^2 \)
(vii) \(\sqrt{81} - 8 \sqrt{216} + 15 \sqrt{32} + \sqrt{225} \)
(viii) \(\frac{3}{\sqrt{8}} + \frac{1}{\sqrt{2}} \)
(ix) \(\frac{2\sqrt{3}}{3} - \frac{\sqrt{3}}{6} \)

10. निम्नलिखित के हर का परिमाण करण कीजिएः

(i) \(\frac{2}{3\sqrt{3}} \)
(ii) \(\frac{\sqrt{40}}{\sqrt{3}} \)
(iii) \(\frac{3 + \sqrt{2}}{4\sqrt{2}} \)
(iv) \(\frac{16}{\sqrt{41} - 5} \)
(v) \(\frac{2 + \sqrt{3}}{2 - \sqrt{3}} \)
(vi) \(\frac{\sqrt{6}}{\sqrt{2} + \sqrt{3}} \)
(vii) \(\frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}} \)
(viii) \(\frac{3\sqrt{5} + \sqrt{3}}{\sqrt{5} - \sqrt{3}} \)
(ix) \(\frac{4\sqrt{3} + 5\sqrt{2}}{\sqrt{48} + \sqrt{18}} \)

11. निम्नलिखित में से प्रत्येक में \(a \) और \(b \) के मान ज्ञात कीजिएः

(i) \(\frac{5 + 2\sqrt{3}}{7 + 4\sqrt{3}} = a - 6\sqrt{3} \)
संख्या पद्धतियाँ

(ii) \[\frac{3 - \sqrt{5}}{3 + 2\sqrt{5}} = a\sqrt{5} - \frac{19}{11} \]

(iii) \[\frac{\sqrt{2} + \sqrt{3}}{3\sqrt{2} - 2\sqrt{3}} = 2 - b\sqrt{6} \]

(iv) \[\frac{7 + \sqrt{5}}{7 - \sqrt{5}} - \frac{7 - \sqrt{5}}{7 + \sqrt{5}} = a + \frac{7}{11}\sqrt{5b} \]

12. यदि \(a = 2 + \sqrt{3} \) है, तो \(a - \frac{1}{a} \) का मान ज्ञात कीजिए।

13. निम्नलिखित में से प्रत्येक में हर का परिमेयीकरण कीजिए और फिर \(\sqrt{2} = 1.414 \), \(\sqrt{3} = 1.732 \) और \(\sqrt{5} = 2.236 \) लें हुए, तीन दशालव स्थानों तक प्रत्येक का मान ज्ञात कीजिए।

(i) \(\frac{4}{\sqrt{3}} \)
(ii) \(\frac{6}{\sqrt{6}} \)
(iii) \(\frac{\sqrt{10} - \sqrt{5}}{2} \)

(iv) \(\frac{\sqrt{2}}{2 + \sqrt{2}} \)
(v) \(\frac{1}{\sqrt{3} + \sqrt{2}} \)

14. सरल कीजिए:

(i) \(\left(1^3 + 2^3 + 3^3\right)^{\frac{1}{2}} \)
(ii) \(\frac{3^4}{5^5} \times \frac{8^7}{5^{12}} \times \frac{32^6}{5} \)

(iii) \(\frac{1}{27} \)
(iv) \(\left(625\right)^{\frac{1}{2}} - \frac{1}{4} \)

(v) \(\frac{9^{3} \times 27^{\frac{1}{2}}}{3^6 \times 3^{-\frac{2}{3}}} \)
(vi) \(64^{-\frac{1}{3}} - 64^3 \)

(vii) \(\frac{8^3 \times 16^3}{32^{-\frac{1}{3}}} \)
(E) दीर्घ उत्तरीय प्रश्न

प्रतिवर्त्य प्रश्न 1: यदि $a = 5 + 2\sqrt{6}$ और $b = \frac{1}{a}$ है, तो $a^2 + b^2$ का मान क्या होगा?

हल : $a = 5 + 2\sqrt{6}$

$$b = \frac{1}{a} = \frac{1}{5 + 2\sqrt{6}} = \frac{1}{5 + 2\sqrt{6}} \times \frac{5 - 2\sqrt{6}}{5 - 2\sqrt{6}} = \frac{5 - 2\sqrt{6}}{25 - 24} = 5 - 2\sqrt{6}$$

इसलिए, $a^2 + b^2 = (a + b)^2 - 2ab$

यहाँ, $a + b = (5 + 2\sqrt{6}) + (5 - 2\sqrt{6}) = 10$

$ab = (5 + 2\sqrt{6})(5 - 2\sqrt{6}) = 5^2 - (2\sqrt{6})^2 = 25 - 24 = 1$

अतः, $a^2 + b^2 = 10^2 - 2 \times 1 = 100 - 2 = 98$

प्रश्नावली 1.4

1. $0.6 + 0.\overline{7} + 0.4\overline{7}$ को $\frac{p}{q}$ के रूप में व्यक्त कीजिए, जहाँ p और q पूर्णांक हैं तथा $q \neq 0$ है।

2. सरल कीजिए : $\frac{7\sqrt{3}}{\sqrt{10} + \sqrt{3}} - \frac{2\sqrt{5}}{\sqrt{6} + \sqrt{5}} - \frac{3\sqrt{2}}{\sqrt{15} + 3\sqrt{2}}$

3. यदि $\sqrt{2} = 1.414, \sqrt{3} = 1.732$ हो, तो $\frac{4}{3\sqrt{3} - 2\sqrt{2}} + \frac{3}{3\sqrt{3} + 2\sqrt{2}}$ का मान ज्ञात कीजिए।

4. यदि $a = \frac{3 + \sqrt{5}}{2}$ है, तो $a^2 + \frac{1}{a^2}$ का मान ज्ञात कीजिए।

5. यदि $x = \frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}}$ और $y = \frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}}$ है, तो $x^2 + y^2$ का मान ज्ञात कीजिए।

6. सरल कीजिए : (256)

7. $\frac{4}{(216)^{\frac{2}{3}}} + \frac{1}{(256)^{\frac{3}{4}}} + \frac{2}{(243)^{\frac{1}{5}}}$ का मान ज्ञात कीजिए।