थीम 2: पदार्थ

क्रियाकलाप 7

हमें क्या करना है?
रेशों से बनने वाले कपड़ों के बारे में जानना।

हमें क्या सामग्री चाहिए?
एक सूती झाड़ (जैसा रसोईघर में काम में लेते हैं) या पोंछे का कपड़ा (जैसा फर्श पर पोंछा लगाने के काम आता है), एक सूई, एक कैंची।

आगे कैसे बढ़े?

1. दिया गया कपड़े का टुकड़ा अपनी मेज़ पर फैला दें।
2. कैंची से कपड़े के इनरें काट दें ताकि धागों का जाल ढीला पड़ जाए (चित्र 7.1)।
3. सूई की सहायता से कपड़े से धागे खींचकर अलग करें (चित्र 7.2)।
4. धागे को मेज पर रखें और उसके एक झिसे को अपने हाथ से पकड़ें और दूसरे हाथ के अंगुठे के नाखून से उसे खरोंच तथा ध्यान से देखें कि क्या हुआ (चित्र 7.3 तथा 7.4)।

चित्र 7.1: कपड़े के टुकड़े को काटना
चित्र 7.2: कपड़े से एक धागा खींचकर अलग करना
चित्र 7.3: धागे को पतले तंतुओं में विभाजित करना
चित्र 7.4: पतले तंतुओं में विभाजित धागा
हमने क्या प्रेरित किया?

यह देखा गया कि कपड़े के धागे को नाखून से खरोंचने पर वह अनेक तंतुओं/रेशों में विभाजित हो जाता है।

हमारा निष्कर्ष क्या है?

- कपड़ा ______________ से बना है।
- धागा अनेक ______________ से बना है।
- धागे का तंतु ______________ से बना है।

आओ उत्तर दें

1. धागे और तंतु में क्या अंतर है?
2. तंतु और रेशे में आप क्या अंतर पाते हैं?
3. कपड़े का मूल अवयव क्या होता है?

हम और क्या कर सकते हैं?

- कुछ अन्य प्रकार के कपड़े लें और जानने का प्रयास करें कि क्या धागा एक तंतु या अनेक तंतुओं से बना है।

शिक्षक के लिए

सुनिश्चित करें कि विद्यार्थी यह समझ सकें कि कपड़े धागों से बना है, धागा तंतुओं से बना है तथा तंतु रेशों से बनते हैं। यह जानना भी आवश्यक है कि प्रत्येक कपड़े का धागा अनेक तंतुओं का बना हुआ नहीं होता।

“टिप्पणी”

__

__

__

__
क्रियाकलाप 8

हमें क्या करना है?

dिए गए पदार्थों को उनके गुणों जैसे – कठोरता, जल में विलयत, जल में तैरना और पारदर्शिता के आधार पर वर्गीकृत करना।

हमें क्या सामग्री चाहिए?

रूई, काँच का टुकड़ा (कुंड किनारों चाला), तेल लगा कागज, चीनी, रबड़, लकड़ी के कोयले का टुकड़ा, लकड़ी का टुकड़ा, एक सिक्का, सप्तं जल का टुकड़ा, बर्तन, जल, चम्मच/काँच की छड़, सफेद कागज की एक शीट।

आगे कैसे बढ़ें?

1. दिए गए पदार्थों को एक-एक करके लें और देखें कौन-से पदार्थ दबाने पर बन जाते हैं। अपने प्रेक्षणों को सारणी 8.1 में लिखें।

2. एक बर्तन (जैसे बीकर, काँच का कटोरा इत्यादि) लें और उसे जल से आधा भर लें। इसमें दिया हुआ कोई पदार्थ/वस्तु डालें और देखें कि वह तैरता है या डूब जाता है (चित्र 8.1)। अब इसे चम्मच या काँच की छड़ से हिलाएं और जाँच करें कि यह बिल्कुल है या अबिल्कुल। यह सब अन्य पदार्थों के साथ भी दोहराएँ। अपने प्रेक्षण सारणी 8.1 में लिखें।

3. एक सफेद कागज की पट्टी लें और उस पर एक गहरे रंग का धब्बा लगाएं (चित्र 8.2)। दिए गए पदार्थों/वस्तुओं को बारी-बारी से धब्बे पर रखें और देखें कि इस स्थिति में क्या हुआ स्पष्ट दिखाई है (चित्र 8.3), स्पष्ट नहीं दिखाई है (चित्र 8.4) अथवा बिल्कुल दिखाई नहीं देता है (चित्र 8.5)। अपने प्रेक्षण सारणी 8.1 में लिखें।
हमने क्या प्रशिक्षित किया?

सारणी 8.1

<table>
<thead>
<tr>
<th>पदार्थ</th>
<th>गुण</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>कठोर/नरम</td>
</tr>
<tr>
<td>जल में डूब जाता है/तैरता है</td>
<td></td>
</tr>
<tr>
<td>पारदर्शिता (पारदर्शी/पारभासी/अपारदर्शी)</td>
<td></td>
</tr>
<tr>
<td>रूई</td>
<td></td>
</tr>
<tr>
<td>काँच का टुकड़ा</td>
<td></td>
</tr>
<tr>
<td>तेल लगा कागज</td>
<td></td>
</tr>
<tr>
<td>चीनी के दान</td>
<td></td>
</tr>
<tr>
<td>रबर</td>
<td></td>
</tr>
<tr>
<td>लकड़ी का कोयला</td>
<td></td>
</tr>
<tr>
<td>लकड़ी</td>
<td></td>
</tr>
<tr>
<td>सिक्का</td>
<td></td>
</tr>
<tr>
<td>सप्त का टुकड़ा</td>
<td></td>
</tr>
</tbody>
</table>

हमारा निष्कर्ष क्या है?

- जिन पदार्थों को दबाने में आसानी होती है, जैसे – रूई, रबर, सप्त, इत्यादि वे नरम होते हैं। जो पदार्थ आसानी से नहीं दबते, जैसे – काँच का टुकड़ा, चीनी के दाने, सिक्का, कोयला, लकड़ी आदि वे कठोर होते हैं।
- पदार्थ जो जल में घुल जाते हैं, विलेय पदार्थ कहलाते हैं, जैसे – चीनी। वे पदार्थ जो अधिक समय तक हिलने पर भी जल में नहीं घुलते, अविलेय पदार्थ कहलाते हैं, जैसे – काँच का टुकड़ा, सिक्का, कोयला, लकड़ी, रबर, सप्त इत्यादि।
- कुछ पदार्थ जल में तैरते हैं, जैसे – रबर, लकड़ी, लकड़ी का कोयला। कुछ पदार्थ जल में डूब जाते हैं जैसे – चीनी के दाने, सिक्का, कांच का टुकड़ा।
- जिन पदार्थों के पार आप स्पष्ट देख सकते हैं, वे पारदर्शी होते हैं, जैसे – काँच का टुकड़ा। जिन पदार्थों के पार स्पष्ट नहीं देख पाते, वे पारभासी होते हैं, जैसे – तेल लगा कागज। जिन पदार्थों के पार बिलकुल नहीं देख सकते, वे अपारदर्शी होते हैं, जैसे – कोयला, लकड़ी, सिक्का, सप्त।

हम निष्कर्ष निकालते हैं कि पदार्थों को उनके गुणों के आधार पर वर्गीकृत किया जाता है।
आओ उत्तर दें

1. चीनी के कोई दो गुण बताएं जिन्हें आपने इस क्रियाकलाप के द्वारा जाना है।
2. किसी कोर्इने वाले दिन में आपको सायनिक धीरे-धीरे चलाने की सलाह दी जाती है, क्यों?
3. निम्नलिखित में से बेमेल का पता लगाएं—
 कोयला, लकड़ी, काँच का टुकड़ा, चीनी, रबड़
 अपने उत्तर का औचित्य दें।

हम और क्या कर सकते हैं?

- इस संकल्पना के आधार पर एक परियोजना पर कार्य किया जा सकता है।
- अपने आस-पास से विभिन्न पदार्थों के कुछ नमूने (कम से कम 10) इकड़े करें और उनके गुणों के आधार पर उन्हें वर्गीकृत करें।

शिक्षक के लिए

- विद्यार्थियों को अन्वेषण और प्रश्न ले के लिए स्वतंत्र अंश है।
- ध्यान दें कि क्रियाकलाप में उपयोग में लिए जाने वाले पदार्थ उपयोग करने वाले को हानि न पहुँचाएं।
- विद्यार्थी अपने पसंद के पदार्थ ले सकते हैं, परन्तु ध्यान रखें कि ये पदार्थ सभी गुण दर्शाएं।

“टिप्पणी”
हमें क्या करना है?
लोहे की छीलन, रेत और नमक के मिश्रण में से इसके तीनों घटकों को पृथक करना।

हमें क्या सामग्री चाहिए?
लोहे की छीलन, रेत और नमक का मिश्रण, चुम्बक, फिल्टर पेपर, दो बीकर, पेट्री डिश, चम्बक/काँच की छड़, गरम करने का साधन, निपाद स्ट्रैंड, तार की जाली (वायर गेज), कागज की शीट, माचिस।

आगे कैसे बढ़ें?
चरण I. दिए गए लोहे की छीलन, रेत और नमक के मिश्रण में से कुछ भाग को लेकर उसे अलग रख दें। शेर मिश्रण को कागज की शीट पर या पेट्री डिश में फैला दें (चित्र 9.1)। मिश्रण की सतह पर एक चुम्बक पुमा ए (चित्र 9.2)। क्या होता है? क्या आप पाते हैं कि चुम्बक की सहायता से लोहे की छीलन मिश्रण से अलग होकर उस पर आ चिपकती है?

चरण II. मिश्रण के शेर भाग, जिसमें से लोहा अलग कर दिया गया है, को एक बीकर में लें। इसमें इतना जल मिलाएं कि मिश्रण जल से ढक जाए। बीकर के पदार्थों को चम्बक/काँच की छड़ से कुछ देर तक हिलाएं। कीप और फिल्टर पेपर की सहायता से पदार्थ को छान लें (चित्र 9.3)। अपने प्रश्नों को रिकॉर्ड करें।
चरण III. एक गरम करने के साधन का उपयोग करते हुए चरण II में प्राप्त छाने हुए विलयन को गरम करें (चित्र 9.4)। विलयन को तब तक गरम करें जब तक लगभग सारा जल वाष्पित नहीं हो जाता।

चित्र 9.3 फिल्टर पेपर का उपयोग करते हुए छानना

चित्र 9.4 नमक बाले जल वृक्त बीकर को गरम करना

हमने क्या प्रशिक्षित किया?

चरण I. लोहे की सारी छीलन चुम्बक से निपक जाती है और इस प्रकार मिश्रण से पृथक हो जाती है।
चरण II. रेत जल में अविलेय होती है और छानने पर पृथक हो जाती है।
चरण III. छानने पर प्राप्त विलयन को गरम करने पर जल वाष्पित हो जाता है और सफेद रंग का पदार्थ (नमक) बीकर के तल पर बचा रह जाता है।

पृथक किए गए घटकों की तुलना अलग रखें या मिश्रण से कीजिए।

हमारा निष्कर्ष क्या है?

- लोहे जैसे चुम्बकीय पदार्थों को चुम्बक द्वारा अलग किया जाता है।
- पदार्थ, जो जल में अविलेय होते हैं (जैसे – रेत), छानकर अलग किए जा सकते हैं।
- जो पदार्थ जल में विलेय होते हैं (जैसे – नमक), वाष्प द्वारा अलग किए जा सकते हैं।
आओ उत्तर दें

1. क्या छानने के अलावा कोई विधि है जिससे रेत को जल से अलग किया जा सके? समझाएँ।
2. फिल्टर-पत्र में से नमक का विलयन तो निकल जाता है, परन्तु रेत नहीं निकल पाती, ऐसा क्यों?
3. नमक युक्त विलयन को शुष्क होने तक गरम करने पर नमक प्राप्त हो जाता है। जल कहाँ चला गया और क्यों?
4. जो जल उबालने पर अट्ठर ज्यादा हो जाता है उसे इकड़ा करने का तरीका सुझाएँ, ताकि उसे उपयोग में लिया जा सके।

हम और क्या कर सकते हैं?

- उन विधियों की सूची बनाएँ जिनें आपके घर पर मिश्रण के घटकों की पृथक करने में काम में लेते हैं।
- उन तरीकों का पता लगाएँ जिनसे जल को शुद्ध करके जल आपूर्ति केंद्र शुद्ध जल आपके घरों तक पहुँचाता है।

शिक्षक के लिए

- आप विभिन्न प्रकार के मिश्रण तैयार कर सकते हैं और घटक पदार्थों के गर्मी के आधार पर विद्याधिकारियों की विभिन्न विधियों को उपयोग में लेने के अवसर दे सकते हैं।
- प्राप्त निष्कर्षों को कक्षा में चर्चा करने के लिए विद्याधिकारियों को प्रोत्साहित करें।

“टिप्पणी”
हमें क्या करना है?

निम्नलिखित परिवर्तनों की जाँच करना कि उन्हें उत्क्रमित किया जा सकता है या नहीं —

(a) नमक को जल में विलय करने पर उसका अदृश्य हो जाना।
(b) आलू को काटकर उसके टुकड़े करना।

हमें क्या सामग्री चाहिए?

नमक, जल, काँच का गिलास, गरम करने का साधन, चावल और, तार की जाली (वायर गेज), तैत्रेय प्लेट, आलू, चाकू, माछिस।

आगे कैसे बढ़ें?

(क) एक काँच के गिलास में एक चमच नमक लें और उसे जल की कम से कम मात्रा में घोल लें (चित्र 10.1)।
 - नमक कहाँ चला गया?
 - क्या हम इस अदृश्य नमक को वापस प्राप्त कर सकते हैं?
 - काँच के गिलास की सामग्री की एक चावल चित्र में स्थानांतरित करें और तब तक गरम करें जब तक कि पूरा जल वायुमिक न हो जाए (चित्र 10.2)।

(ख) एक आलू लें (चित्र 10.3)। इसे चाकू से छोटे-छोटे टुकड़ों में काट लें (चित्र 10.4a) [चाकू का उपयोग सावधानी से करें]।
 - क्या आप आलू के इन टुकड़ों (चित्र 10.4b) से अलू को उसके मूल स्वरूप (चित्र 10.3) में प्राप्त कर सकते हैं?

चित्र 10.1
नमक को जल में घोलना

चित्र 10.2
नमक के जल उपस्थता चावल चित्र को गरम करना

चित्र 10.3
एक आलू

(a) चित्र 10.4
टुकड़ों में चटा हुआ एक आलू
हमने क्या प्रक्षिप्त किया?

- नमक जल में घुल जाता है और इस प्रकार अदृश्य हो जाता है। जल के वाण्यस्त्रोता नमक पुनः प्राप्त हो जाता है।
- आलू को काटने पर वह टुकड़ों में बदल जाता है परंतु उसे वापस अपने मूल रूप में पुनः प्राप्त करने का कोई तरीका नहीं है।

हमारा निष्कर्ष क्या है?

- जल में नमक का घुलना एक परिवर्तन है जिसे उत्क्रमित किया जा सकता है क्योंकि जल का वाण्यस्त्रोता नमक को पुनः प्राप्त किया जा सकता है।
- आलू को काटकर उसके टुकड़े करना एक परिवर्तन है जिसे उत्क्रमित नहीं किया जा सकता।

आओ उत्तर दें

1. गुंदे हुए आटे से रोटी बनाना और रोटी को पकाना का परिवर्तन है। क्या ये परिवर्तन एक जैसे हैं या भिन्न? अपने उत्तर का औचित्य दीजिए।
2. कच्चा आम समय के साथ पक जाता है। क्या यह परिवर्तन उत्क्रमणीय है या अनुक्रमणीय?
3. निम्नलिखित परिवर्तनों को उत्क्रमणीय/अनुक्रमणीय में वर्गीकृत करें –
 (a) सीमेंट का गीला होना
 (b) गीले कपड़े का सूखना
 (c) नींबू को निचोड़ना
 (d) खिड़की को खोलना

हम और क्या कर सकते हैं?

अपने आस-पास देखें। कम से कम ऐसे दस परिवर्तनों की सूची बनाएं जिन्हें उत्क्रमित किया जा सकता है और ऐसे दस परिवर्तन जिन्हें उत्क्रमित नहीं किया जा सकता।

शिक्षक के लिए

‘हमारे चारों ओर के परिवर्तन’ के अभ्यास के शिक्षण के समय अच्छा होगा कि विद्यार्थियों को कक्षा-कक्ष से बाहर लेकर जाएं और बच्चों को होने वाले परिवर्तनों का अवबेदन, प्रेक्षण, रिकॉर्ड करने और उन पर चर्चा करने दें।
चित्र 11.1 उदासीनीकरण का प्रक्रम
हमने क्या प्रेक्षित किया?

- फिनाल्फेलिन सूचक डालने पर हाइड्रोक्लोरिक अम्ल के विलयन के रंग में कोई परिवर्तन नहीं होता है।
- हाइड्रोक्लोरिक अम्ल और फिनाल्फेलिन विलयन के मिश्रण में लगभग 5mL सोडियम हाइड्रोक्लोराइड विलयन मिलाने पर मिश्रण का रंग बदलकर गुलाबी हो जाता है।
- गुलाबी विलयन में हाइड्रोक्लोरिक अम्ल विलयन मिलाने पर उसका रंग धीरे-धीरे हल्का पड़ने लगता है और अंततः विलयन रंगहीन हो जाता है।

हमारा निष्कर्ष क्या है?

- अम्लीय विलयन में फिनाल्फेलिन सूचक रंगहीन रहता है, जबकि शारीरिक विलयन में इसका रंग गुलाबी हो जाता है।
- यह पाया गया कि किसी अम्ल में कोई शारीरिक मिलाने पर एक अवस्था ऐसी आती है जब अम्ल का प्रभाव उदासीन हो जाता है जो कि सूचक के रंग परिवर्तन दर्शाता है। इसी प्रकार जब किसी शारीरिक में अम्ल मिलाते हैं तब शारीर का प्रभाव भी उदासीन हो जाता है।

आओ उत्तर दें

1. फिनाल्फेलिन विलयन का रंग क्या होता है?
2. क्या आप किसी प्राकृतिक सूचक का नाम बता सकते हैं?
3. जब हाइड्रोक्लोरिक अम्ल सोडियम हाइड्रोक्लोराइड विलयन को उदासीन करता है, तो क्या उत्पाद बनते हैं?
4. इस क्रियाकलाप में प्राप्त उदासीन विलयन से डोस लवण प्राप्त करने का कोई तरीका मुझे दिंदूँ?
5. जब आप अपाचन से पीड़ित होते हैं तो आपको प्रतिअम्ल के विलयन या प्रतिअम्ल की गोली लेने की सलाह क्यों दी जाती है?

हम और क्या कर सकते हैं?

(i) अपाचन और (ii) चींटी के काटने के घरेलू उपाय के घरेलू उपाय दुःखं।
- जामुन, लाल पता, गोभी, सदाबहार, गुलाब के सूचक विलयन बनाएं, और कुछ अम्लीय और शारीरिक पदार्थों के विलयनों में उनके रंगों की जाँच करें।
शिक्षक के लिए

• गतिविधि की समाप्ति पर शिक्षक उदासीनीकरण के प्रक्रम को बताने पर बल दें जिसमें कोई अम्ल किसी क्षार से अभिक्रिया कर लवण और जल बनाता है।

अम्ल + क्षार के समाप्ति पर लवण + जल

इस प्रकार की अभिक्रियाओं में ऊष्मा भी उत्पन्न होती है।

• 1 लीटर तनु हाइड्रोक्लोरिक अम्ल तैयार करने के लिए लगभग 5 mL सांत्र हाइड्रोक्लोरिक अम्ल और 995 mL जल लें। अम्ल को धीरे-धीरे जल में मिलाएँ। तनु हाइड्रोक्लोरिक अम्ल उपयोग के लिए तैयार है।

• 1 लीटर तनु सोडियम हाइड्रोक्लाइड विलयन बनाने के लिए 1 लीटर जल में 2 g सोडियम हाइड्रोक्लाइड की टिकियां घोलें।

• क्लार्टीफेरलिन का 1% विलयन बनाने के लिए 100 mL एथिल एट्ल्यॉहॉल में 1 g ढोंग क्लार्टीफेरलिन घोलें।

“टिप्पणी”

__

__

__

__

__

__
क्रियाकलाप 12

हमें क्या करना है?
लवण के विलय की अम्लीय/शार्कीय/उदासीन प्रकृति की पहचान करना।

हमें क्या सामग्री चाहिए?
फेरिक क्लोराइड, सोडियम एसीटेट, सोडियम क्लोराइड, जल, लिटमस पेपर (लाल और नीला), ड्रॉपर, परखनियाँ, परखनियों स्टेंड, वाच ग्लास।

आगे कैसे बढ़ें?
1. एक वाच ग्लास में लगभग 1mL फेरिक क्लोराइड विलय लें। नीले लिटमस पेपर का एक टुकड़ा लें और इस विलय में डुबोएं। ज्ञात की आप नीले लिटमस पेपर के रंग में कोई परिवर्तन देखते हैं? इसी प्रकार विलय में लाल लिटमस पेपर का एक टुकड़ा डुबोएं और होने वाले परिवर्तन को देखें।
2. उपर्युक्त क्रियाएँ क्रमश: सोडियम एसीटेट विलय और सोडियम क्लोराइड विलय के साथ दोहराएं। प्रेक्षण करें।

हमने क्या प्रक्षिप्त किया?
- फेरिक क्लोराइड विलय नीले लिटमस पेपर को लाल कर देता है परन्तु यह लाल लिटमस पेपर के रंग में कोई परिवर्तन नहीं करता (चित्र 12.1)।
- सोडियम एसीटेट विलय लाल लिटमस पेपर को नीला कर देता है परन्तु नीले लिटमस पेपर के रंग को परिवर्तित नहीं करता (चित्र 12.2)।
- सोडियम क्लोराइड विलय लाल या नीले लिटमस पेपर का रंग परिवर्तन नहीं करता है (चित्र 12.3)।
हमारा निष्कर्ष क्या है?

- फेरिक क्लोराइड विलयन अम्लीय है।
- सोडियम ऐसीटेट विलयन क्षारीय है।
- सोडियम क्लोराइड विलयन उदासीन है।

आओ उत्तर दें

1. दो प्राकृतिक उत्पादों के नाम बताएं, जो अम्लीय प्रकृति के होते हैं।
2. क्या आप लिटरस के अलावा किसी सूचक के बारे में जानते हैं जो अम्लीय पदार्थ की क्षारीय पदार्थ से अलग पहचान करने में उपयोग में लाया जाता है?
3. अम्लीय, क्षारीय और उदासीन लवण क्या रंग देते हैं, जब उनके विलयन की एक-एक बूँद लाल लिटरस पेपर के टुकड़ों पर डाली जाती है? अपने उत्तर का कारण भी बताएं।
4. दो फूलों के नाम बताएं, जिन्हें हम सूचक विलयन बनाने के काम में लें सकते हैं।

हम और क्या कर सकते हैं?

कुछ पदार्थों, जैसे - लाल बंगोभी, चुकुट, गुलाब, गोगनबिंगिया इत्यादि से सूचक बनाए जा सकते हैं।

शिक्षक के लिए

- एक परखनली में 5mL आसुत जल लेकर और उसमें एक चुटकी टोस सोडियम ऐसीटेट घोलकर सोडियम ऐसीटेट का विलयन तैयार करें।
- इसी प्रकार फेरिक क्लोराइड और सोडियम क्लोराइड लवणों के विलयन तैयार करें।
- सभी परखनलियाँ ओर उनके लवणों के नामों से लेबल करें (चित्र 12.4)।
- लवणों का उनकी अम्लीय, क्षारीय और उदासीन प्रकृति के लिए अन्य प्राकृतिक सूचकों से भी परीक्षण किया जा सकता है।
- स्वतंत्र जल में लवण का ताजा विलयन तैयार करें। फेरिक क्लोराइड के स्थान पर आप कॉपर सल्फेट भी ले सकते हैं।
हमें क्या करना है?
कागज को मोड़ने, फाड़ने और जलाने जैसे परिवर्तनों के मध्य अंतर करना।

हमें क्या सामग्री चाहिए?
कागज, मोमबत्ती/सिपरिट लैंप, माचिस, स्टील की प्लेट, पेट्री डिश।

आगे कैसे बढ़ें?

चरण I. कागज में लिया हुआ एक कागज लें और उसकी तह लगाएँ (चित्र 13.1)। आप कितनी बार उसकी तह लगाने में सफल हुए? अब इसे वापस सीधा कर दें। क्या आपको कागज अपने मूल स्वरूप और साइज में प्राप्त हुआ?

चरण II. इसी कागज को लेकर इंतज़ार अनुसार इसके कुछ टुकड़े कर दें (चित्र 13.2)। अब कागज को मूल स्वरूप और साइज में प्राप्त करने का प्रयास करें। क्या आप ऐसा करने में सफल हुए?
क्या आप सोचते हैं कि उपर्युक्त दो चरणों में कोई नया पदार्थ बना?

चरण III. कागज के कुछ टुकड़े लें और उन्हें जलता दें। बनने वाले उत्पाद को स्टील की प्लेट या पेट्री डिश में इकट्ठा करें (चित्र 13.3)।
कागज को जलाने समय सावधानी बरतें।
बनने वाले उत्पाद की तुलना कागज के मूल टुकड़ों से करें।
आप या देखते हैं?
क्या आपके विचार से इस परिवर्तन में कोई नया पदार्थ बना है?

चित्र 13.1
कागज की तह लगाना

चित्र 13.2
कागज के टुकड़े करना

चित्र 13.3
कागज को जलाना
हमने क्या प्रश्नित किया?

रचना I. कागज को 6 से 7 बार तक लगातार तह लगा सकते हैं। कागज की तहों को खोलने पर वह अपना मूल स्वरूप और साइज प्राप्त कर लेता है।

रचना II. कागज के टुकड़ों को गोंड से ठोक्का जा सकता है। परन्तु कागज को उसके मूल स्वरूप में प्राप्त नहीं किया जा सकता।

रचना I और II में होने वाले परिवर्तन कोई नया पदार्थ/उत्पाद नहीं देते हैं।

रचना III. कागज के टुकड़ों को जलाने से वे काले पड़ जाते हैं, जबकि कागज के मूल टुकड़े सफ़ेद रंग के थे। कागज के टुकड़ों को जलाते समय धुआँ भी निकलता है। यह दर्शाता है कि इस परिवर्तन में नए पदार्थ (ठोस और गैसीय) बनते हैं।

हमारा निष्कर्ष क्या है?

- रचना I और रचना II में मात्र भौतिक अवस्था/गुण में परिवर्तन देखा गया और कोई नया पदार्थ नहीं बना। अतः वे भौतिक परिवर्तन हैं।
- परन्तु रचना III में नए पदार्थ बनें। अतः यह एक रासायनिक परिवर्तन है।

आओ उत्तर दें

1. लिखिए कि उपरोक्त तीन चरणों में होने वाले परिवर्तन उक्त्रमणीय हैं कि अनुक्रमणीय हैं?

2. क्या पदार्थों का जलना —
 (a) भौतिक परिवर्तन है जिसे उक्त्रमित किया जा सकता है।
 (b) भौतिक परिवर्तन है जिसे उक्त्रमित नहीं किया जा सकता।
 (c) रासायनिक परिवर्तन है जिसे उक्त्रमित किया जा सकता है।
 (d) रासायनिक परिवर्तन है जिसे उक्त्रमित नहीं किया जा सकता।

3. मिम्नालिखित परिवर्तनों पर टिप्पणी करें —
 (a) आँडे को उबालना
 (b) आँडे को फेंटना
 (c) स्वेटर बुनना
 (d) बालों का सफ़ेद होना।
प्रयोगशाला पुस्तिका — उच्च प्राथमिक शतरा

शिक्षक के लिए

• विभिन्न प्रकार के परिवर्तनों की देखने के लिए शिक्षक विद्यार्थियों के लिए एक क्षेत्र भ्रमण का आयोजन कर सकते हैं। विद्यार्थियों को इन भौतिक परिवर्तनों और रासायनिक परिवर्तनों में वर्गीकृत करने के लिए साथ ही इन उत्तम फैलाया या उत्तराधिकार करने वाले परिवर्तनों में वर्गीकृत किया जा सकता है।
• शिक्षक को चाहिए कि वह संसाधनों के संरक्षण के महत्व पर ध्यान केंद्रित करें, जैसे – कागज बचाना, इत्यादि।
• संसाधनों (जैसे खाद्य पदार्थों को पकाना) और अवांछनीय परिवर्तनों (भोजन का सड़ना) की अवधारणा को फैलाने में लाना चाहिए और कश्च में इस पर कर्म की जानी चाहिए। अवांछनीय परिवर्तनों को हतोत्साहित किया जाना चाहिए क्योंकि ये मुख्य व्यवसाय गति को नष्ट करने वाले और हानिकारक रूप से उपरी करते हैं। उदाहरण के लिए, घरों में भोजन पदार्थों और भण्डार ग्रहों में अनाज का सड़ना देश के लिए भारी क्षति हो सकती है।

“टिप्पणी”

__

__

__

__

__

__
क्रियाकलाप 14

हमें क्या करना है?
पौधों, जंतुओं और वर्गीकृत स्रोतों से प्राप्त तनाव के जल अवशोषण क्षमता की तुलना करना।

हमें क्या सामग्री चाहिए?
सूती, ऊप्री और नाइट्रोजन के कपड़ों के समान आकार के टुकड़े, बीकर, कॉन्च का गिलास, कीप, त्रिपाद स्टैण्ड, जल, तुला।

आगे कैसे बढ़े?
1. सूती कपड़े का टुकड़ा लें और इसे तोल लें।
2. बीकर में भरे जल में कपड़े को डुबोएँ (चित्र 14.1)।
3. बीकर को टेंद करके अतिरिक्त जल को बाहर निकाल दें (चित्र 14.2)।
4. एक ट्रिपाद स्टैण्ड पर एक कीप रखें और एक बीकर या कॉन्च का गिलास कीप की नली के नीचे रखें।
5. बीकर से गिला कपड़ा निकाल कर कीप में रखें (चित्र 14.3)।
6. तब तक प्रतीक्षा करे जब तक कपड़े से जल टपकना बंद न हो जाए।
7. अब गीले कपड़े को तोले और अपने प्रेक्षण, सारणी 14.1 में लिखें।
8. उपरोक्त सभी क्रियाएँ ऊप्री और नाइट्रोजन के कपड़ों के साथ दोहराएँ।

चित्र 14.1 बीकर में जल में डुबोया गया कपड़ा।
चित्र 14.2 बीकर को टेंद करके जल की अधिक मात्रा को बाहर निकालना।
चित्र 14.3 कीप में रखा हुआ गीला कपड़ा।
हमने क्या प्रेक्षित किया?

सारणी 14.1

<table>
<thead>
<tr>
<th>क्र.सं.</th>
<th>पदार्थ</th>
<th>सूखे कपड़े का भार A (g)</th>
<th>गीले कपड़े का भार B (g)</th>
<th>अवशोषित जल का भार (B − A) (g)</th>
<th>1 g कपड़े द्वारा अवशोषित जल का भार (\frac{B − A}{A}) (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>सूत (पीपे से प्राप्त रेशा या तनतू)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>ऊन (जांतव रेशा या तनतू)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>नाइलॉन (संश्लेषित रेशा या तनतू)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

हमारा निष्कर्ष क्या है?

- रेशों के जल अवशोषण क्षमता का क्रम है: सूत > ऊन > नाइलॉन

आओ उत्तर दें

1. उपर्युक्त क्रियाकलाप में हमने देखा कि कपड़े में जल को अपने भीतर रखने की क्षमता होती है। क्या वे वायु की भी इसी प्रकार अपने भीतर रख सकते हैं?
2. भिन-भिन कपड़ों में जल धारण क्षमता भिन रूपों होती है?
3. गर्मियों के मौसम में संश्लेषित कपड़ों की अपेक्षा सूती कपड़े पहनना क्यों पसंद किया जाता है?
4. गीले सूती कपड़ों की गीले नाइलॉन के कपड़ों की अपेक्षा सूखने में अधिक समय क्यों लगता है?

हम और क्या कर सकते हैं?

- विद्यार्थी दर्जी की दुकान/घर से कपड़ों के भिन्न नमूने इकड़े कर सकते हैं और उनकी जल अवशोषण क्षमता का पता लगा सकते हैं।

शिक्षक के लिए

- भिन्न मौसमों में उपयोग में लिए जाने वाले कपड़ों की प्रासंगिकता के संबंध में शिक्षक बच्चों के बीच एक परिचार्य आरम्भ कर सकते हैं।
क्रियाकलाप 15

हमें क्या करना है?
प्राकृतिक और मानव निर्मित रेखाओं के मध्य भेद करना।

हमें क्या सामग्री चाहिए?
कपास, ऊन, पॉलिएस्टर और नाइलॉन के धागे, स्पिरिट लैम्प, चिमटी, माचिस।

आगे कैसे बढ़ें?
1. एक ऊनी धागा लें और उसे चिमटी से पकड़ें (चित्र 15.1)।
2. इसे किसी गर्म करने के साधन (जैसे – स्पिरिट लैम्प) की ज्वाला में जलाएँ (चित्र 15.2)।
3. उपयुक्त क्रियाओं को दूसरे धागों के साथ दोहराएं और अपने प्रश्नांशों के लिए ध्यान दें।

हमने क्या प्रक्षिप्त किया?
प्राकृतिक रेखों (कपास, ऊन) बिना पिघलाए जलते हैं, जबकि मानव निर्मित रेखों (पॉलिएस्टर, नाइलॉन) पहले नरम पड़ते हैं और फिर जलने से पहले पिघलकर एक दाना बन जाते हैं।

हमारा निष्कर्ष क्या है?
- वे रेखे जो जलने पर राख में बदल जाते हैं, प्राकृतिक रेखों होते हैं और वे रेखे जो जलने पर पहले पिघलते हैं तथा जलने से पहले दाना बनाते हैं, मानव निर्मित (संशोधित) रेखे होते हैं।

आओ उत्तर दें
1. ज्वाला के निकट कार्य करते समय हमें संशोधित वस्त्र न पहनने की सलाह क्यों दी जाती है?
2. पैराफूट संशोधित रेखाओं से क्यों बनाए जाते हैं?
हम और क्या कर सकते हैं?

आप निम्नलिखित परियोजना को पूरा करके प्राकृतिक और संशोषित रेशों के जैव-निम्नीकरण की जाँच कर सकते हैं।

- विद्यालय के उद्यान में दो मिट्टी के बर्तन रखें।
- सूती, रेशामी, झूट इत्यादि वस्त्रों के विभिन्न नमूनों को, जिन्हें आप दर्जा की दुकान या घर से इकट्ठा कर सकते हैं, गीली मिट्टी के साथ मिलाएं और एक बर्तन में डाल दें और उसे ‘A’ से चिह्नित करें।
- दूसरे बर्तन को ‘B’ से चिह्नित करें और संशोषित रेशों जैसे नाइलॉन, पॉलिएस्टर झूठ के विभिन्न नमूनों को गीली मिट्टी के साथ मिलाकर उस बर्तन में डाल दें।
- इन दो बर्तनों को बिना छेड़े कम से कम एक माह तक पड़े रहने दें और ध्यान रखें कि प्रयोग के पूरे समय के दौरान मिट्टी गीली बनी रहे। इसके बाद वस्त्रों के टुकड़ों को निकालें और उनकी दशा को नोट करें।
- अपने प्रश्नों के आधार पर परियोजना रिपोर्ट तैयार करें।

आपको चाहिए कि आप दोनों प्रकार के वस्त्र-नमूनों की तुलना परियोजना के प्रारम्भ और अंत में करें और परियोजना पूर्ण होने पर परिणामों पर कक्षा में चर्चा करें।

शिक्षक के लिए

- विद्यार्थी प्राकृतिक और संशोषित रेशों के नमूनों को पहले ही इकट्ठा कर लें।
- आप विद्यार्थियों को संशोषित रेशों और प्राकृतिक रेशों से निम्नित विविध वस्तुओं दिखा सकते हैं।
- शिक्षक संशोषित वस्तुओं के कारण होने वाले प्रदर्शन पर परीक्षा प्रारम्भ कर सकते हैं।

“टिप्पणी”
हमें क्या करना है?
धातिक ऑक्साइडों की शारीरिक प्रकृति को प्रदर्शित करना।

हमें क्या सामग्री चाहिए?
मैनीशियम की पतली पट्टी (फीता / विंब), आसुत जल, लाल और नीले लिटमस पेपर, रेगमाल, स्पिरिट लेम्प, वाच ग्लास, टॉप, मासिस।

आगे कैसे बढ़े?
1. लगभग 5cm मैनीशियम की पट्टी लें। यदि यह चमकदार नहीं है तो इसे रेगमाल से रंग डाल दीक से साफ कर लें।
2. मैनीशियम की पट्टी के टॉप की सहायता से पर पतली की सहायता से एक सीरे से पकड़ें।
3. मैनीशियम की पट्टी के दूसरे सीरे को स्पिरिट लेम्प की ज्वाला में ले जाएँ और उसे जलने के (चित्र 16.1) (जलती हुई मैनीशियम की पट्टी को लगातार न देखें।)
4. मैनीशियम के जलने से बनी राख को वाच ग्लास में इकट्ठा करें।
5. राख में थोड़ा-सा आसुत जल मिलाएँ और उसे हलाएँ।
6. इसमें बारी-बारी से नीला और लाल लिटमस पेपर डबोएँ और उनके रंग में होने वाले परिवर्तनों को देखें (चित्र 16.2)।

हमने क्या प्रस्तुत किया?
- नीले लिटमस पेपर के रंग में कोई परिवर्तन नहीं होता।
- लाल लिटमस पेपर नीला हो गया।
हमारा निष्कर्ष क्या है?

मैमीशियम ऑक्साइड जल में घोलने पर धारकीय गुण प्रदर्शित करता है।

मैमीशियम जलकर मैमीशियम ऑक्साइड (सफेद चूर्ण/राख) बनाता है, जो जल में पुलकर मैमीशियम हाइड्रॉक्साइड बनाता है जिसकी धारकीय प्रकृति होती है।

मैमीशियम + ऑक्सीजन (वायु से) ➞ मैमीशियम ऑक्साइड

मैमीशियम ऑक्साइड + जल ➞ मैमीशियम हाइड्रॉक्साइड

आओ उत्तर दें

1. हमें मैमीशियम की पट्टी को जलाने से पहले सफा क्यों कर लेना चाहिए?
2. मैमीशियम की पट्टी के जलने पर प्राप्त उत्पाद का नाम क्या है?
3. इस क्रियाकलाप में बनने वाली राख को जल में घोलने पर बनने वाले उत्पाद का नाम बताएँ।
4. नीले लिटमस पेपर के रंग में कोई परिवर्तन क्यों नहीं होता जब उसे मैमीशियम ऑक्साइड के विलयन में डुबोया जाता है?
5. मैमीशियम ऑक्साइड का विलयन लाल लिटमस पेपर को नीला क्यों कर देता है?

हम और क्या कर सकते हैं?

राख के विलयन को हल्दी चूर्ण, कुछ फूलों का सत जैसे अन्य सूचकों से परीक्षण करें।

शिक्षक के लिए

- जलती हुई मैमीशियम की पट्टी को लगातार लम्बे समय तक देखना खतरनाक होता है। शिक्षक को चाहिए कि वह बच्चों को जलती पट्टी को लगातार न देखने की सलाह दें।
- यदि मैमीशियम की पट्टी चमकदार नहीं है, तो वह आग पकड़ने में लम्बा समय ले सकती है, अतः उचित होगा कि पट्टी को रेगामाल से रगड़कर साफ कर लें।
- आयरन ऑक्साइड की क्षारकीय प्रकृति का परीक्षण जंग लेकर भी किया जा सकता है।
क्रियाकलाप 17

हमें क्या करना है?

dर्शाना है कि अधातिक ऑक्साइड अम्लीय प्रकृति के होते हैं।

हमें क्या सामग्री चाहिए?

सल्फर पाउडर, जल, काॅच का गिलास/ गैस जार, ढक्कन, बाढ़ ग्लास, लाल और नीले लिटम्स पेपर, उद्हन चम्मच, सिपारिट लैम्प, माँचिस।

आगे कैसे बढ़े?

1. एक उद्हन चम्मच में धोड़ा सल्फर पाउडर लें (चित्र 7.1) और इसे सिपारिट लैम्प पर गायम करें।
2. जलते सल्फर युक्त चम्मच को काॅच के गिलास/ जार में ले जाएँ जिसमें धोड़ा जल हो (चित्र 17.1), ध्यान रखें कि चम्मच जल में डूबे नहीं।
3. सल्फर के जलने से बनी गैस बाहर न निकल जाए, इसके लिए गिलास/ जार को ढक्कन से ढक दें।
4. कुछ समय पश्चात् चम्मच को हटा लें।
5. गैस को जल में पोलने के लिए ढके हुए गिलास को भरती-भांति हिलाएं।
6. बिलयन को बाढ़ ग्लास में स्थानांतरित कर दें (चित्र 17.2a)।
7. बारी-बारी से लाल और नीले लिटम्स पेपर को बिलयन में डबोएं (चित्र 17.2b) और उनके रंग में होने वाले परिवर्तनों को देखें।

हमने क्या प्रेषित किया?

- लाल लिटम्स पेपर के रंग में कोई परिवर्तन नहीं होता।
- नीला लिटम्स पेपर लाल हो जाता है।
हमारा निष्कर्ष क्या है?

अधारित्वक ऑक्साइड जल में घुलकर अन्तःगृह गुण दश्तियाँ हैं। सल्फर वायु में जलकर सल्फर डाइऑक्साइड गैस बनती है, जो जल में घुलकर सल्फ़्यूस अम्ल बनती है।

\[
\text{सल्फर + ऑक्सीजन (वायु से) } \rightarrow \text{सल्फर डाइऑक्साइड}
\]

\[
\text{सल्फर डाइऑक्साइड + जल } \rightarrow \text{सल्फ़्यूस अम्ल}
\]

सल्फ़्यूस अम्ल नीले लिटम्स पेपर का रंग बदलकर लाल कर देता है।

आओ उत्तर दें

1. सल्फर के जलने पर बनने वाली गैस का नाम लिखें।
2. सल्फर के जलने पर बनने वाली गैस की जल में घोलने पर बनने वाले अम्ल का नाम लिखें।

हम और क्या कर सकते हैं?

- यह क्रियाकलाप कार्यन और अन्य अध्यापक, यदि उपलब्ध हों, के साथ करें। बनने वाले अधारित्वक ऑक्साइडों के अन्तःगृह लक्षण दर्शाने के लिए, अन्य सूचकों का उपयोग भी करें।

शिक्षक के लिए

- जलने के लिए बहुत अधिक सल्फर न लें। इससे वायु प्रदूषित होती है। कक्ष में पर्यावरण प्रदूषण के प्रभाव पर परिचय की जामी चाहिए।
- आप एक काम चलाउं उद्घाटन चम्मच बना सकते हैं। किसी बोतल का मोटा धातु गड्ढ़ से और इस पर धातु की तार लपेटकर उसे मोड़दे जैसा कि चित्र 17.3 में दर्शाया गया है।

चित्र 17.3
काम चलाउं उद्घाटन चम्मच
क्रियाकलाप 18

हमें क्या करना है?

प्रदर्शित करना कि आयरन कॉपर से अधिक अभिक्रियाशील है।

हमें क्या सामग्री चाहिए?

100mL बीकर, दाढ़ी बनाने वाले ब्लेड अथवा लोहे की बील, कॉपर सल्फेट, आसुत जल, नीले और लाल लिटमस पेपर, तनु सल्फूरिक अम्ल, ड्रेपर।

आगे कैसे बढ़े?

1. एक 100 mL का बीकर लें और उसमें लगभग 50 mL जल डालें।
2. इस जल में लगभग एक चमच कॉपर सल्फेट डालें और उसे हिलाकर विलेय करें।
3. ड्रेपर की सहायता से उपयुक्त विलयन में कुछ बूंदें तनु सल्फूरिक अम्ल की डाल दें।
4. विलयन में अब दाढ़ी बनाने वाले ब्लेड डालें।
5. लगभग आधे घंटे के बाद ब्लेड तथा कॉपर सल्फेट विलयन के रंग में हुए परिवर्तन को नोट करें (चित्र 18.1)।

हमने क्या प्रकट किया?

कॉपर सल्फेट का रंग पहले हल्का पड़ता है फिर हरा हो जाता है और ब्लेड पर भूरे रंग का पदार्थ जमाहो जाता है।

हमारा निष्कर्ष क्या है?

आयरन द्वारा कॉपर सल्फेट विलयन से कॉपर विस्थापित होकर भूरे रंग के पदार्थ के रूप में जमा हो जाता है। आयरन सल्फेट बनने के कारण विलयन का रंग हरा हो जाता है।

कॉपर सल्फेट + आयरन → आयरन सल्फेट + कॉपर

नीला धूसर हल्का हरा भूरा
आओ उत्तर दें

1. कॉपर सल्फेट विलयन में रखे दाढ़ी बनाने वाले ब्लेड का रंग कुछ समय पश्चात भूरा क्यों हो जाता है?
2. कॉपर सल्फेट विलयन का रंग अंततः हरा क्यों हो जाता है?

हम और क्या कर सकते हैं?

- दाढ़ी बनाने वाले ब्लेड के स्थान पर लोहे के कील लेकर क्रियाकलाप को दोहराया जा सकता है।
- अन्य लवणों के विलयन लें और उनमें भिन्न धातु डालकर देखें कि क्या विस्थापन अभिक्रियाएँ होती हैं।

शिक्षक के लिए

हम कॉपर सल्फेट का लगभग 5% विलयन बनाना चाहिए। अधिक साद्री विलयन अभिक्रिया में बनने वाले आयरन सल्फेट के हो रंग को कुप्पा देता है और अधिक तनु विलयन में अभिक्रिया बहुत धीमी होगी।

“टिप्पणी”

हमें क्या करना है?

प्रदर्शित करना कि कुछ धातुओं पर अम्लों की क्रिया से हाइड्रोजन गैस निकलती है।

हमें क्या सामग्री चाहिए?

ऐलुमिनियम की पत्थरी, तनु हाइड्रोक्लोरिक अम्ल, शंक्वाकार (कोनिकल) फ्लास्क, बब्बी कॉन्के, कोश की नली, माल्टिस, मोमबत्ती।

आगे कैसे बढ़ें?

1. एक शुद्ध कोनिकल फ्लास्क में ऐलुमिनियम की पत्थरी के कुछ टुकड़े लें।
2. इस कोनिकल फ्लास्क में 2–3 mL तनु हाइड्रोक्लोरिक अम्ल डालें और उपकरण को चित्र 19.1 में दिखाए अनुसार व्यवस्थित करें।
3. देखें कि क्या हो रहा है।
4. कोश की नली के मुंह के पास एक जलती हुई माल्टिस की ढीली या जलती हुई मोमबत्ती लाने पर गैस चालू होता है। (चित्र 19.2)

हमने क्या प्रक्षण किया?

- ऐलुमिनियम की पत्थरी कोनिकल फ्लास्क में अम्ल डालने पर किसी गैस के बुझाबुझ होता है।
- कोश की नली के मुंह के पास जलती हुई मोमबत्ती लाने पर गैस “पॉप” ध्वनि चालू होती है।
हमारा निष्कर्ष क्या है?

- ऐलुमिनियम और तनु हाइड्रोक्लोरिक अम्ल के मध्य अभिक्रिया से हाइड्रोजन गैस उत्सर्जित होती है।
 ऐलुमिनियम + तनु हाइड्रोक्लोरिक अम्ल → ऐलुमिनियम क्लोराइड + हाइड्रोजन गैस
- हाइड्रोजन गैस वायु में जलकर जल बनाती है और एक ध्रविन उत्पन्न होती है, जिसे सामान्यतः “पॉप” ध्रवन कहते हैं।
 हाइड्रोजन गैस + ऑक्सीजन (वायु से) → जल (पॉप ध्रवन उत्पन्न होती है।)

आओ उत्तर दें

1. जब हाइड्रोजन गैस ‘पॉप’ ध्रवन के साथ जलती है, तो क्या पदार्थ बनता है?
2. एक परतनली में ऐलुमिनियम और तनु हाइड्रोक्लोरिक अम्ल की अभिक्रिया से एक गैस बनती है, जिसे वायु में जलती मोमबत्ती से जलाने पर जल बनता है। वायु का कौन-सा अवयव गैस के साथ अभिक्रिया करता है?
3. क्या वायु का यह अवयव तब भी अभिक्रिया करेगा यदि जलती मोमबत्ती या माचिस की तीली गैस के सम्बन्ध में नहीं लाई जाती?
4. ऐलुमिनियम के कम से कम दो उत्तरों बताएँ।

हम और क्या कर सकते हैं?

- हाइड्रोजन गैस के उत्सर्जन के लिए ऐलुमिनियम के साथ प्राकृतिक धार, जैसे – सोडियम हाइड्रोक्लोराइड से, अभिक्रिया की भी दर्शाया जा सकता है।
- क्रियाकलाप को एक अभास (जैसे – कॉयला, सल्फर, इत्यादि) को लेकर दोहराएँ।

शिक्षक के लिए

- शिक्षक कक्ष में अन्य धातुओं की विभिन्न अम्लों के साथ अभिक्रियाओं की चर्चा करें और उन्हें दर्शाएँ।
- क्रियाकलाप के आधार पर शिक्षक कक्ष में धातुओं और अभासों के मध्य भिन्नता पर परिचर्चा प्रारंभ कर सकता है।
हमें क्या करना है?
धातुओं एवं अधातुओं की विद्युत चालकता को प्रदर्शित करना।

हमें क्या सामग्री चाहिए?
विद्युत सैल, बल्ब, कॉपर तार, लोहे की कील, दानेदार जिंक, सल्फर, कोयले का टुकड़ा।

आगे कैसे बढ़ें?
1. एक विद्युत सैल तथा एक विद्युत बल्ब को कॉपर तारों से जोड़कर चित्र 20.1 में दर्शाये अनुसार एक विद्युत परिपथ बनाएं।
2. विद्युत परिपथ के तारों के चुले सिरों को विभिन्न धातुओं (जैसे कि लोहे की कील, दानेदार जिंक) तथा अधातुओं (जैसे सल्फर, कोयले का टुकड़ा) के दो सिरों के सम्पर्क में लायें तथा यह देखें कि किन स्थितियों में बल्ब दीप्त होता है (चित्र 20.2)।

हमने क्या प्रश्नित किया?
- लोहे की कील तथा दानेदार जिंक परिपथ में होने पर दीप्त होता है।
- परिपथ में सल्फर या कोयले का टुकड़ा होने पर बल्ब नहीं दीप्त होता।

हमारा निष्कर्ष क्या है?
- लोहे की कील तथा दानेदार जिंक, धातु होने के कारण विद्युत के सुचालक हैं जबकि सल्फर तथा कोयले का टुकड़ा जो कि अधातु हैं, विद्युत का संचालन नहीं करते।
आओ उत्तर दें

1. यदि हम पेंट किए हुए लोहे के तुकड़े को काम में लें, तो क्या बल्ब दीप्त होगा? अपने उत्तर का ओळीच्छ मानिए।
2. बिद्युत संयोजन बनाते समय हम प्लास्टिक आवश्यक तार क्यों काम में लेते हैं?
3. बिद्युत उपकरणों के साथ कार्य करते हुए हमें रबड़ सोल चाले जूते पहनने की सलाह क्यों दी जाती है?

हम और क्या कर सकते हैं?

- हमें इस क्रियाकलाप को धातुओं के मिश्रातु जैसे कि पीतल, स्टेनलेस स्टील तथा अन्य सामग्री जैसे कि कागज का तुकड़ा, कपड़े का तुकड़ा, पीने वाली स्ट्रो आदि का उपयोग करके संपादित करना चाहिए।

शिक्षक के लिए

विद्यार्थियों को बताया जाना चाहिए कि प्रेरणात्मक कार्य हैं, जो कि कोई आवश्यक नहीं है लेकिन विद्युत का सुचालक है जबकि कार्यने के अन्य रूप जैसे कि हीरा, कोल, तथा चारकोल विद्युत के कुचालक हैं।

“टिप्पणी”

__
__
__
__
__
__
हमें क्या करना है?

प्रदर्शित करना कि किसी पदार्थ के दहन के लिए ऑक्सीजन आवश्यक है।

हमें क्या सामग्री चाहिए?

do मोमबती, माँगिस, कॉच-जार अथवा एक बीकर।

आगे कैसे बढ़ें?

1. दो मोमबतियाँ जलाएं तथा उन्हें एक मेज पर खड़ी करें (चित्र 21.1)।
2. दोनों मोमबतियों को कुछ समय के लिए जलाए दें।
3. अब इनमें से एक मोमबती को कॉच के जार अथवा बीकर से ढके तथा उसे कुछ समय के लिए प्रेषित करें (चित्र 21.2)।

हमने क्या प्रेषित किया?

- यह देखा जाता है कि बिना ढकी हुई मोमबती लगातार जलती है।
- ढकी हुई मोमबती कुछ समय तक जलती रहती है फिर बुझ जाती है (चित्र 21.3)।
हमारा निष्कर्ष क्या है?

यह क्रियाकलाप दर्शाता है कि दहन प्रक्रिया के लिए ऑक्सीजन आवश्यक है।

मोमबत्ती कुछ समय तक लगातार जलती रहती है जब तक कि जार अथवा बीकर में उपलब्ध समस्त ऑक्सीजन लगभग समाप्त न हो जाए। इसके बाद ऑक्सीजन न मिलने पर उसका जलना रुक जाता है।

आओ उत्तर दें

1. दहन एक भौतिक परिवर्तन है अथवा रासायनिक परिवर्तन?
2. आग को बुझाने में सहायता करने वाली गैस का नाम दीजिए।
3. यदि जलते हुए केरोसीन तेम्प को आग एक जार से ढकते हैं तो उसकी ज्वाला कुछ समय बाद बुझ जाएगी? अपने उत्तर का औचित्य दीजिए।
4. जब किसी व्यक्ति के कपड़े आग पकड़ लेते हैं तो हम उसे कंबल से क्यों ढकते हैं?

हम और क्या कर सकते हैं?

कार्बन डाइऑक्साइड आग बुझाती है। इसे दर्शाने के लिए क्रियाकलाप कीजिए।

एक तिहाई सिंचे से भरी परखनली में आधा चमच वेबिंग सोडा मिलाकर कार्बन डाइऑक्साइड गैस तैयार करें। अब मार्चिस की जलती हुई तीली को परखनली के मुंह पर ले जाएं। ज्वाला एकदम बुझ जाती है।

शिक्षक के लिए

- दहन में ऑक्सीजन की भूमिका की चर्चा करते हुए आग बुझाने में कार्बन डाइऑक्साइड की भूमिका की भी विवेचना कीजिए।
- विद्यार्थियों को अभिनाम्न दिखाकर इसकी कार्यप्रणाली की चर्चा कीजिए।
क्रियाकलाप 22

हमें क्या करना है?

प्रदर्शित करना है कि ईंधन/पदार्थ के दहन के लिए उसे उसके ज्वलन ताप तक गरम करना पड़ता है।

पदार्थ

हमें क्या सामग्री चाहिए?

कागज/पेपर, मोमबत्ती, जल, माचिस।

आगे कैसे बढ़ें?

1. कागज के दो कोन बनाएं।
2. रिक्त पेपर कोन को मोमबत्ती की ज्वाला से गरम कीजिए एवं प्रेक्षित कीजिए (चित्र 22.1 a)।
3. दूसरे पेपर कोन को जल से एक तिहाई भरे तथा इसे ज्वाला पर गरम करें और प्रेक्षित करें (चित्र 22.1 b)।

चित्र 22.1

(a) रिक्त पेपर कोन
(b) पेपर कोन में जल गरम करते हुए

हमें क्या प्रेक्षित किया?

रिक्त पेपर कोन तूफान जलना प्रारंभ कर देता है लेकिन जल से भरा पेपर कोन नहीं जलता तथा इसके अन्दर का जल गरम हो जाता है।

हमारा निष्कर्ष क्या है?

- जब किसी पदार्थ का ताप उसके ज्वलन ताप तक पहुँच जाता है तो पदार्थ जलने लगता है।
- रिक्त पेपर कोन तूफान जलना प्रारंभ कर देता है क्योंकि इसका ज्वलन ताप शीघ्र पहुँच जाता है।
- जल से भरा पेपर कोन नहीं जलता है क्योंकि ऊपरा जल को स्थानान्तरित हो जाती है तथा पेपर का ताप इसके ज्वलन ताप तक नहीं पहुँचता है।
आओ उत्तर दें

1. पतझड़ (शरद) के उपरान्त सामान्यतः हम जंगल की आग क्यों प्रक्षित करते हैं?
2. ती पतियों के ढेर की जलना कठिन क्यों होता है जबकि सूखी पतियाँ आसानी से जल जाती हैं।
3. बिजुत उपकरणों के अतिरिक्त अन्य वस्तुओं में लगी आग को बुझाने के लिए हम जल क्यों डालते हैं?

हम और क्या कर सकते हैं?

- पेपर, लकड़ी तथा कार्ड बोर्ड को जलाने की कोशिश करें। पदार्थों को आग पकड़ने में लगे समय को नोट कीजिए। इनमें से किस पदार्थ का ज्वलन ताप अधिक है?

शिक्षक के लिए

- शिक्षक विद्यार्थियों को अभिशमन केन्द्र ले जाकर आग बुझाने की विभिन्न विधियाँ एवं विभिन्न प्रकार के अभिशमक यंत्रों के बारे में अवगत करा सकते हैं।
- अभिशमन केन्द्र से व्यक्तियों को बुलाकर उनके व्याख्यान तथा अभि आपदा की रोकथाम के उपायों को बताए बनाए रखने की संकल्पना की पड़ोसी कमिटी में करा सकते हैं।
- पेपर कोष बनाने के लिए विद्यार्थियों से रह्ये पेपर काम में लेने को कहें। इससे पेपर की बचत में सहायता मिलेगी तथा उसके पुन: उपयोग की संकल्पना की ओर ध्यान केन्द्रित होगा।
- जब बच्चे गर्म कर रहे हों तो शिक्षक उन्हें सावधानी बताने के विदेश दें।

“टिप्पणी”
क्रियाकलाप 23

हमें क्या करना है?
जल को गरम करते समय, उबलते समय तथा ठंडा करते समय इसके ताप का मापन।

हमें क्या सामग्री चाहिए?
प्रयोगशाला थर्मामीटर, जल को गरम करने के लिए पात्र, गरम करने के लिए स्रोत तथा स्टोप वॉच।

आगे कैसे बढ़े?
1. पात्र को जल से आधा भरें।
2. इसे स्टोव अथवा ऊष्मा के किसी अन्य स्रोत पर रखें।
3. प्रत्येक दो मिनट में जल का ताप मापें। यदि रखें कि हमेंशा ताप के सेल्सियस मापक्रम (स्केल) का उपयोग करते हैं।

चेतावनी – जल के ताप को मापने के लिए आपको प्रयोगशाला थर्मामीटर का उपयोग करना चाहिए न कि डॉक्टर थर्मामीटर का। डॉक्टर थर्मामीटर का उपयोग हमारे शरीर के ताप को मापने के लिए होता है। यदि इसे 42°C से अधिक ताप मापने के लिए जल में लेते हैं तो यह टूट सकता है।

थर्मामीटर का बल्क़ जल में डूबा रहना चाहिए। यह ऊध्वांधर (खड़ा) रहना चाहिए तथा पात्र की दीवार एवं पेंदे को नहीं छूना चाहिए (चित्र 23.1)।

चित्र 23.1 झर (जल) में थर्मामीटर को रखने का सही तरीका.
प्रयोगशाला पुस्तिका — उच्च प्राथमिक शर

• थर्मामीटर को उध्वाघर पकड़कर रखना चाहिए।
• आपको धर (जल) का ताप तब पढ़ना चाहिए जब थर्मामीटर का बलब धर (जल) में झूमा हो।
• आपको वह निशान पढ़ना चाहिए जहाँ मरकरी का चमकता सूत्र दिखाई देता है।
• आपकी ओरेंज पढ़ने के चिह्न के ठीक सामने यानी सीध में होनी चाहिए।

चित्र 23.2 थर्मामीटर पढ़ने का सही तरीका

4. अपने प्रश्नों को सारणी 23.1 में रिकॉर्ड करें। आप आवश्यकता के अनुसार पंक्तियाँ बना सकते हैं।

सारणी 23.1
जल का ताप

<table>
<thead>
<tr>
<th>संख्या</th>
<th>समय (मिनट)</th>
<th>ताप (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>0</td>
<td>जल का प्रारंभिक ताप</td>
</tr>
<tr>
<td>2.</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

5. जल उबलने दे। उबलते हुए जल का ताप मापने रहें तथा अपने प्रश्नों को सारणी 23.1 में रिकॉर्ड करें।
6. जब जल उबल रहा हो तो उसके कुछ प्रश्न लेने के उपरांत पात्र को ऊष्मा के स्रोत से हटा दे।
7. ठण्डे होते हुए जल का ताप कुछ बार मापें/तथा अपने प्रश्नों को सारणी 23.1 में लिखें।
8. अपने प्रश्नों का एक ग्राफ बनाएं। यह लघुभग चित्र 23.3 जैसा दिखेगा।
हमने क्या प्रश्नित किया?

- हमने जल का ताप इसके गर्म होने समय, इसके उबलने समय और इसके ठंडा होने समय नोट किया। हमने पाया कि जल का ताप पहले बढ़ता है, जब जल ऊर्जा है तो ताप निवेश हो जाता है तथा गर्म करना बन जाता है तो ताप कम होने लगता है।
- हमने अपने प्रश्नों से एक ग्राफ भी बनाया है।

हमारा निष्कर्ष क्या है?

हम पाते हैं कि जब जल ऊर्जा है तो उस समय ताप में कोई परिवर्तन नहीं होता है, उबलते हुए जल का ताप स्थिर रहता है।
हमने ऊर्जा हुए जल का ताप °C पाया।

आओ उत्तर दें

1. ताप को पढ़ते समय थर्मोमीटर का बल्ब त्रंक में क्यों डूबा रहना चाहिए? आपको देखना चाहिए कि थर्मोमीटर को त्रंक से बाहर निकालकर ताप पढ़ने का प्रयास करने पर क्या होता है?
2. मरक्के के तल को पढ़ने के लिए आपकी आँख मरक्के के तल की एकदम सीधे में क्यों होनी चाहिए?
3. क्या आपके ग्राफ का शीतलन भाग, ग्राफ के ऊर्जन भाग के एकदम समान है?
4. क्या आपके प्रयोग स्थान पर ऊर्जा हुए जल का ताप 100°C से भिन्न है? यदि हाँ तो ऐसा क्यों है? अपने शिक्षक से चर्चा कीजिए।
5. क्या इस थर्मोमीटर का उपयोग हमारे शरीर के ताप को मापने के लिए किया जा सकता है यदि नहीं तो कारण दीजिए।
हम और क्या कर सकते हैं?

- एक कप में थोड़ी बर्फ पिलाएं। पिलाए समय बर्फ का ताप माप करें। उपयुक्त क्रियाकलाप के अनुसार अपने प्रश्नों को एक सारणी में रिकॉर्ड करें। अपने प्रश्नों के संदर्भ में चराचरियां कीजिए कि क्या पिलाई गई बर्फ के साथ की, ताप मैंने पर एक नियत बिन्दु के स्थान में लिया जा सकता है।
- जब आप चाय पीने को तैयार हों तो उस समय चाय का ताप माप करें।
- जो गम्भीर जल आप सर्दियों में नहाने के लिए काम में लेते हैं उसका ताप ज्ञात कीजिए।
 अपनी पसंद के शीतल पेय (लस्सी/शरबत/कॉफी/नाइंडू की शिकंजी) का ताप ज्ञात कीजिए।

शिक्षक के लिए

यह उपयुक्त रहेगा कि शिक्षक दो-दो विद्यार्थियों के समूह बनाएं। समूह का एक विद्यार्थी धर्मांतर को ठीक से पकड़े (चित्र 23.1) जबकि उसका दूसरा साथी नियमित समयांतराल पर ताप को नोट करें। जब एक सदस्य के प्रेषण समाप्त हो जाए तो वह धर्मांतर को ठीक से पकड़े तथा उसका साथी ताप नोट करे। दोनों अपने-अपने प्रेषण ले तथा अपना-अपना ग्राफ बनाएं।

जब पूरी कक्षा कार्य समाप्त कर ले तो क्रियाकलाप पर सामयिक रूप से परिचर्चा की जा सकती है। जब विद्यार्थी जल गम्भीर कर रहे हों तो शिक्षक को उसे सारबद्ध रहने की चेतावनी देनी चाहिए। उसे रखरखाव भी सतर्क रहना चाहिए ताकि किसी भी प्रतार द्वारा दुर्घटना से बचा जा सके।

कक्षा में परिचर्चा के लिए शिक्षक के लिए मीमलिखित बिन्दु सहायक हो सकते हैं—

- मोबाइल फोन को स्टॉप बॉन्च के रूप में उपयोग में लाया जा सकता है।
- जहाँ तक संभव हो प्रेषण नियमित अन्तराल पर लिए जाने चाहिए। इससे सारणी अधिक व्यवस्थित बनेगी तथा ग्राफ खाचना आसान होगा।
- ड्रब में सही रूप में धर्मांतर को रखने में विद्यार्थियों की सहायता करें। यदि कुछ विद्यार्थियों को ताप सही पढ़ने में कठिनाई हो तो उनका व्याख्या चित्र 23.2 की ओर ले जाएं।
- ग्राफ खाँचने में विद्यार्थियों की सहायता करें। संबंध विषय को दोहराया जा सकता है।
- याद रखें कि जब जल उबलता है तो ताप में कोई परिवर्तन नहीं होता है क्योंकि इस दीर्घ ती कई रूप में जल को बाया में परिवर्तन करने में ख़रा हो जाती है।
- जल समान दर से उबला नहीं होता है। प्रारम्भ में शीतलता तीव्र होता है तथा बाद में यह धीमा हो जाता है।
• समझाएँ कि जल हमेशा 100°C पर नहीं उबलता है क्योंकि इसके लिए सभी विशिष्ट परिस्थितियाँ एक साथ पूर्ण नहीं होती हैं। इस कारण से जल का क्वड्रांगा अलग-अलग स्थानों पर अलग-अलग होता है। जल का क्वड्रांगा 100°C होता है इसे रटने के लिए विद्यार्थियों को हलोट्साहित करें। उनके लिए यह जानना पर्याप्त है कि उनके स्थान पर जल किस ताप पर उबलता है।

• विद्यार्थियों का ध्यान इस तथ्य की ओर दिलाएँ कि प्रयोगशाला थर्ममीटर पर चिह्न -10°C से 110°C तक अंकित होते हैं। इसके विपरीत डॉक्टरी थर्ममीटर में यह 35°C से 42°C तक अंकित होते हैं। यदि विद्यार्थी इसे समझने में असमर्थ हों कि ऐसा क्यों होता है तो उन्हें समझाएँ कि शरीर का ताप अधिकाक्षेत्र: इसी पश्चात में होता है।

• समझाएँ कि इस देश में हमने ताप के सैल्सियस पैमाने को अपनाया है। अतः ताप के पैमाने को अभियोजन करने के लिए विद्यार्थियों को इसे ही प्रयुक्त करना चाहिए।

“टिप्पणी”

__

__

__

__

__

__

__

__

__

__

__

__
हमें क्या करना है?

उष्मा के चालक एवं कुचालक में विभेद करना।

हमें क्या सामग्री चाहिए?

हमें तीन वस्तुएँ चाहिए, जिनमें एक धातु की बनी हो तथा शेष दो प्लास्टिक, स्वर अथवा लकड़ी की बनी हो सकती हैं। वस्तुओं की लम्बाई, मोटाई, चौड़ाई आदि लगभग समान होनी चाहिए। संभावित वस्तुएँ चमच, सकरी पट्टी, छड़ अथवा नली हो सकती हैं।

आगे कैसे बढ़ें?

1. एक बड़ा गिलास, एक बड़ा प्लास्टिक मग अथवा एक बड़े बीकर को गरम जल (उबलता हुआ नहीं) से आधा भर लें। यदि गिलास में जल को गरम कर रहे हैं तो सावधान रहिए।
2. तीनों वस्तुओं को जल में इस प्रकार रखें कि उनका एक सिरा जल के बाहर रहे। (चित्र 24.1)
3. प्रत्येक दो मिनट के अंतर वस्तुओं के जल के बाहर विद्यमान सिरे को एक-एक करके छुएँ।
4. अपने प्रश्नों को सारणी 24.1 में रिकॉर्ड करें।

सारणी 24.1

<table>
<thead>
<tr>
<th>सामग्री</th>
<th>क्या गरम हुआ/ क्या गरम नहीं हुआ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2 मिनट बाद</td>
</tr>
<tr>
<td></td>
<td>4 मिनट बाद</td>
</tr>
</tbody>
</table>
हमने क्या प्रकृति किया?

- धातु से बनी वस्तु का बाहरी सिरा तुरंत गरम हो जाता है।
- लकड़ी/रबड़/प्लास्टिक से बनी वस्तु का बाहरी सिरा चार मिनट के बाद भी गरम नहीं होता है।

हमारा निष्कर्ष क्या है?

हम निष्कर्ष निकालते हैं कि धातु से बनी वस्तुओं का बाहरी सिरा गरम हो जाता है जबकि प्लास्टिक/लकड़ी/रबड़ से बनी वस्तुओं का बाहरी सिरे गरम नहीं होते हैं। अर्थात् कुछ पदार्थ जैसे कि धातुओं में ऊष्मा का प्रवाह एक सिरे से दूसरे सिरे तक आसानी से हो जाता है जबकि अन्य वस्तुओं जैसे कि प्लास्टिक में यह आसानी से प्रवाहित नहीं होता है। दो पदार्थ जिनमें ऊष्मा का प्रवाह आसानी से हो जाता है ऊष्मा के सुचालक या चालक कहलाते हैं। ऐसे पदार्थ जिनमें ऊष्मा का प्रवाह आसानी से नहीं होता है ऊष्मा के कुछ अधवा ऊष्मा रोधी कहलाते हैं।

आओ उत्तर दें

1. खाली पकाने के बर्तनों के हैंडल प्लास्टिक अथवा लकड़ी के बने क्यों होते हैं?
2. इशिता की रसोई में समान साइज के कॉपर, ऐलूमिनियम तथा स्टेनलेस स्टील से बने बर्तन हैं। इसमें से किस बर्तन का उपयोग वह जल की गरमी करने के लिए करेगी ताकि न्यूनतम मात्रा में ईथन खर्च हो?
3. इस क्रियाकलाप को नियामित करने के लिए लगभग समान लंबाई, मोटाई तथा चौड़ाई की वस्तुओं की आवश्यकता क्यों होती है?
4. वस्तुओं के गरम सिरों का ताप आपके शरीर के ताप से कम होता है अथवा अधिक होता है?
5. यदि हम वस्तुओं के बाहरी सिरों को नहीं चुना चाहें तो यह पता लगाने के लिए कि सिरा गरम है अथवा नहीं, किस उपकरण को काम में लेंगे?
6. आपके अनुभव के अनुसार क्या ऊष्मा के सुचालक, विद्युत के भी सुचालक होते हैं (संकेत – एक पेचकस के प्लास्टिक हैंडल के बारे में विचार कीजिए)।

हम और क्या कर सकते हैं?

इस क्रियाकलाप को कार्बन (प्राफाइट) तथा अन्य अधातुओं (यदि उपलब्ध हो) के द्वारा नियामित करें।
शिक्षक के लिए

- जब जल गर्म किया जा रहा है तो शिक्षक को सतर्क रहना चाहिए जिससे अनहोनी दुर्घटना न हो।
- शिक्षक को यह सुनिश्चित करना चाहिए कि जल इस्तमाल गर्म नहीं होना चाहिए कि वह विद्यार्थियों को हानि पहुँचाए।
- वस्तु को छूने से पहले दो मिनट का इंतजार यह सुनिश्चित करने के लिए होता है कि ऊपर को दूसरे सिरे तक प्रवाहित करने में लघु भाग तक की आवश्यकता होती है। कुछ मिनट पश्चात् प्रश्नों को दोहराना, दूसरे सिरे तक ऊपर के प्रवाह के लिए पश्चात सयां समय प्रदान करने के लिए आवश्यक होता है।
- सभी वस्तुओं की लगभग समान साइज की आवश्यकता अन्य सभी चरांकों को दूर करने हेतु हमारे अध्ययन को केवल समय एवं वस्तुओं की चालकता के मध्य सम्बन्ध स्थापित करने में सहायता है। विद्यार्थियों के सामान्य सिद्धांत के अनुसार एक सयां में एक चरांक के दूसरे चरांक पर प्रभाव का अध्ययन करना चाहिए।
- शिक्षक विद्यार्थियों का समर्थन कराएं कि ऊपर उच्च ताप से निम्न ताप की ओर प्रवाहित होती है। जो वस्तु हमें गर्म प्रतिव तापमान हमारे शरीर के तापमान से अधिक होता है तथा ऊपर इस वस्तु से हमारे शरीर में प्रवाहित होती है।
- शिक्षक इस आवश्यक पर यह चर्चा भी कर सकते हैं कि लोहे से बनी वस्तुएं, तल्कट में बनी वस्तुओं की तुलना में तर्फियों में अधिक ठंडी तथा गर्मी तथा गर्मी में अधिक गर्म क्यों लगती है।
- कॉणर की चालकता एलुमिनियम की तुलना में 1.5 गुना तथा स्टेनलेस स्टील की तुलना में 20 गुना अधिक होती है।

“टिप्पणी”

__

__

__

__

__