Foreword

The National Curriculum Framework (NCF), 2005, recommends that children’s life at school must be linked to their life outside the school. This principle marks a departure from the legacy of bookish learning which continues to shape our system and causes a gap between the school, home and community. The syllabi and textbooks developed on the basis of NCF signify an attempt to implement this basic idea. They also attempt to discourage rote learning and the maintenance of sharp boundaries between different subject areas. We hope these measures will take us significantly further in the direction of a child-centred system of education outlined in the National Policy on Education (1986).

The success of this effort depends on the steps that school principals and teachers will take to encourage children to reflect on their own learning and to pursue imaginative activities and questions. We must recognise that given space, time and freedom, children generate new knowledge by engaging with the information passed on to them by adults. Treating the prescribed textbook as the sole basis of examination is one of the key reasons why other resources and sites of learning are ignored. Inculcating creativity and initiative is possible if we perceive and treat children as participants in learning, not as receivers of a fixed body of knowledge.

These aims imply considerable change in school routines and mode of functioning. Flexibility in the daily time-table is as necessary as rigour in implementing the annual calendar so that the required number of teaching days are actually devoted to teaching. The methods used for teaching and evaluation will also determine how effective this textbook proves for making children’s life at school a happy experience, rather than a source of stress or boredom. Syllabus designers have tried to address the problem of curricular burden by restructuring and reorienting knowledge at different stages with greater consideration for child psychology and the time available for teaching. The textbook attempts to enhance this endeavour by giving higher priority and space to opportunities for contemplation and wondering, discussion in small groups, and activities requiring hands-on experience.

The National Council of Educational Research and Training (NCERT) appreciates the hard work done by the Textbook Development Committee responsible for this
book. We wish to thank the Chairperson of the advisory group in Science and Mathematics, Professor J.V. Narlikar and the Chief Advisor for this book Professor P.K. Jain for guiding the work of this committee. Several teachers contributed to the development of this textbook; we are grateful to their principals for making this possible. We are indebted to the institutions and organisations which have generously permitted us to draw upon their resources, material and personnel. We are especially grateful to the members of the National Monitoring Committee, appointed by the Department of Secondary and Higher Education, Ministry of Human Resource Development under the Chairpersonship of Professor Mrinal Miri and Professor G.P. Deshpande, for their valuable time and contribution. As an organisation committed to the systemic reform and continuous improvement in the quality of its products, NCERT welcomes comments and suggestions which will enable us to undertake further revision and refinement.

New Delhi
20 December 2005

Director
National Council of Educational Research and Training
Textbook Development Committee

Chairperson, Advisory Group in Science and Mathematics
J.V. Narlikar, Emeritus Professor, Chairman, Advisory Committee Inter University Centre for Astronomy & Astrophysics (IUCCA), Ganeshkhind, Pune University, Pune

Chief Advisor
P.K. Jain, Professor, Department of Mathematics, University of Delhi, Delhi

Chief Coordinator
Hukum Singh, Professor, DESM, NCERT, New Delhi

Members
A.K. Rajput, Associate Professor, RIE Bhopal, M.P.
A.K. Wazalwar, Associate Professor, DESM NCERT, New Delhi
B.S.P. Raju, Professor, RIE Mysore, Karnataka
C.R. Pradeep, Assistant Professor, Department of Mathematics, Indian Institute of Science, Bangalore, Karnataka.
Pradeepto Hore, Sr. Maths Master, Sarla Birla Academy Bangalore, Karnataka.
S.B. Tripathy, Lecturer, Rajkiya Pratibha Vikas Vidyalaya, Surajmal Vihar, Delhi.
S.K.S. Gautam, Professor, DESM, NCERT, New Delhi
Sanjay Kumar Sinha, P.G.T., Sanskriti School Chanakyapuri, New Delhi.
Sanjay Mudgal, Lecturer, CIET, New Delhi
Sneha Titus, Maths Teacher, Aditi Mallya School Yelharika, Bangalore, Karnataka
Sujatha Verma, Reader in Mathematics, IGNOU, New Delhi.
Uaday Singh, Lecturer, DESM, NCERT, New Delhi.

Member-coordinator
V.P. Singh, Associate Professor, DESM, NCERT, New Delhi
Acknowledgements

Acknowledgements are due to Professor M. Chandra, *Head*, Department of Education in Science and Mathematics for her support.

The Council acknowledges the efforts of the Computer Incharge, Deepak Kapoor; Rakesh Kumar, Kamlesh Rao and Sajjad Haider Ansari, D.T.P. Operators; Kushal Pal Singh Yadav, Copy Editor and Proof Readers, Mukhtar Hussain and Kanwar Singh.

The contribution of APC–Office, administration of DESM and Publication Department is also duly acknowledged.
Contents

Foreword iii

1. **Sets** 1
 1.1 Introduction 1
 1.2 Sets and their Representations 1
 1.3 The Empty Set 5
 1.4 Finite and Infinite Sets 6
 1.5 Equal Sets 7
 1.6 Subsets 9
 1.7 Power Set 12
 1.8 Universal Set 12
 1.9 Venn Diagrams 13
 1.10 Operations on Sets 14
 1.11 Complement of a Set 18
 1.12 Practical Problems on Union and Intersection of Two Sets 21

2. **Relations and Functions** 30
 2.1 Introduction 30
 2.2 Cartesian Product of Sets 30
 2.3 Relations 34
 2.4 Functions 36

3. **Trigonometric Functions** 49
 3.1 Introduction 49
 3.2 Angles 49
 3.3 Trigonometric Functions 55
 3.4 Trigonometric Functions of Sum and Difference of Two Angles 63
 3.5 Trigonometric Equations 74

4. **Principle of Mathematical Induction** 86
 4.1 Introduction 86
 4.2 Motivation 87
 4.3 The Principle of Mathematical Induction 88
5. **Complex Numbers and Quadratic Equations** 97
5.1 Introduction 97
5.2 Complex Numbers 97
5.3 Algebra of Complex Numbers 98
5.4 The Modulus and the Conjugate of a Complex Number 102
5.5 Argand Plane and Polar Representation 104
5.6 Quadratic Equations 108

6. **Linear Inequalities** 116
6.1 Introduction 116
6.2 Inequalities 116
6.3 Algebraic Solutions of Linear Inequalities in One Variable and their Graphical Representation 118
6.4 Graphical Solution of Linear Inequalities in Two Variables 123
6.5 Solution of System of Linear Inequalities in Two Variables 127

7. **Permutations and Combinations** 134
7.1 Introduction 134
7.2 Fundamental Principle of Counting 134
7.3 Permutations 138
7.4 Combinations 148

8. **Binomial Theorem** 160
8.1 Introduction 160
8.2 Binomial Theorem for Positive Integral Indices 160
8.3 General and Middle Terms 167

9. **Sequences and Series** 177
9.1 Introduction 177
9.2 Sequences 177
9.3 Series 179
9.4 Arithmetic Progression (A.P.) 181
9.5 Geometric Progression (G.P.) 186
9.6 Relationship Between A.M. and G.M. 191
9.7 Sum to \(n \) terms of Special Series 194

10. **Straight Lines** 203
10.1 Introduction 203
10.2 Slope of a Line 204
10.3 Various Forms of the Equation of a Line 212
10.4 General Equation of a Line 220
10.5 Distance of a Point From a Line 225
<table>
<thead>
<tr>
<th>11.</th>
<th>Conic Sections</th>
<th>236</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1</td>
<td>Introduction</td>
<td>236</td>
</tr>
<tr>
<td>11.2</td>
<td>Sections of a Cone</td>
<td>236</td>
</tr>
<tr>
<td>11.3</td>
<td>Circle</td>
<td>239</td>
</tr>
<tr>
<td>11.4</td>
<td>Parabola</td>
<td>242</td>
</tr>
<tr>
<td>11.5</td>
<td>Ellipse</td>
<td>247</td>
</tr>
<tr>
<td>11.6</td>
<td>Hyperbola</td>
<td>255</td>
</tr>
<tr>
<td>12.</td>
<td>Introduction to Three Dimensional Geometry</td>
<td>268</td>
</tr>
<tr>
<td>12.1</td>
<td>Introduction</td>
<td>268</td>
</tr>
<tr>
<td>12.2</td>
<td>Coordinate Axes and Coordinate Planes in Three Dimensional Space</td>
<td>269</td>
</tr>
<tr>
<td>12.3</td>
<td>Coordinates of a Point in Space</td>
<td>269</td>
</tr>
<tr>
<td>12.4</td>
<td>Distance between Two Points</td>
<td>271</td>
</tr>
<tr>
<td>12.5</td>
<td>Section Formula</td>
<td>273</td>
</tr>
<tr>
<td>13.</td>
<td>Limits and Derivatives</td>
<td>281</td>
</tr>
<tr>
<td>13.1</td>
<td>Introduction</td>
<td>281</td>
</tr>
<tr>
<td>13.2</td>
<td>Intuitive Idea of Derivatives</td>
<td>281</td>
</tr>
<tr>
<td>13.3</td>
<td>Limits</td>
<td>284</td>
</tr>
<tr>
<td>13.4</td>
<td>Limits of Trigonometric Functions</td>
<td>298</td>
</tr>
<tr>
<td>13.5</td>
<td>Derivatives</td>
<td>303</td>
</tr>
<tr>
<td>14.</td>
<td>Mathematical Reasoning</td>
<td>321</td>
</tr>
<tr>
<td>14.1</td>
<td>Introduction</td>
<td>321</td>
</tr>
<tr>
<td>14.2</td>
<td>Statements</td>
<td>321</td>
</tr>
<tr>
<td>14.3</td>
<td>New Statements from Old</td>
<td>324</td>
</tr>
<tr>
<td>14.4</td>
<td>Special Words/Phrases</td>
<td>329</td>
</tr>
<tr>
<td>14.5</td>
<td>Implications</td>
<td>335</td>
</tr>
<tr>
<td>14.6</td>
<td>Validating Statements</td>
<td>339</td>
</tr>
<tr>
<td>15.</td>
<td>Statistics</td>
<td>347</td>
</tr>
<tr>
<td>15.1</td>
<td>Introduction</td>
<td>347</td>
</tr>
<tr>
<td>15.2</td>
<td>Measures of Dispersion</td>
<td>349</td>
</tr>
<tr>
<td>15.3</td>
<td>Range</td>
<td>349</td>
</tr>
<tr>
<td>15.4</td>
<td>Mean Deviation</td>
<td>349</td>
</tr>
<tr>
<td>15.5</td>
<td>Variance and Standard Deviation</td>
<td>361</td>
</tr>
<tr>
<td>15.6</td>
<td>Analysis of Frequency Distributions</td>
<td>372</td>
</tr>
</tbody>
</table>
16. **Probability** 383
 16.1 Introduction 383
 16.2 Random Experiments 384
 16.3 Event 387
 16.4 Axiomatic Approach to Probability 394

Appendix 1: Infinite Series 412
 A.1.1 Introduction 412
 A.1.2 Binomial Theorem for any Index 412
 A.1.3 Infinite Geometric Series 414
 A.1.4 Exponential Series 416
 A.1.5 Logarithmic Series 419

Appendix 2: Mathematical Modelling 421
 A.2.1 Introduction 421
 A.2.2 Preliminaries 421
 A.2.3 What is Mathematical Modelling 425

Answers 433

Supplementary Material 466