4.1 Introduction

In the previous chapter, we have studied about matrices and algebra of matrices. We have also learnt that a system of algebraic equations can be expressed in the form of matrices. This means, a system of linear equations like

\[
\begin{align*}
\begin{bmatrix}
a_1 & b_1 \\
a_2 & b_2 \\
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
\end{bmatrix}
=
\begin{bmatrix}
c_1 \\
c_2 \\
\end{bmatrix}
\end{align*}
\]

can be represented as. Now, this system of equations has a unique solution or not, is determined by the number \(a_1 b_2 - a_2 b_1 \). (Recall that if \(\frac{a_1}{a_2} \neq \frac{b_1}{b_2} \) or, \(a_1 b_2 - a_2 b_1 \neq 0 \), then the system of linear equations has a unique solution). The number \(a_1 b_2 - a_2 b_1 \) which determines uniqueness of solution is associated with the matrix \(A = \begin{bmatrix} a_1 & b_1 \\ a_2 & b_2 \end{bmatrix} \) and is called the determinant of A or \(\det A \). Determinants have wide applications in Engineering, Science, Economics, Social Science, etc.

In this chapter, we shall study determinants up to order three only with real entries. Also, we will study various properties of determinants, minors, cofactors and applications of determinants in finding the area of a triangle, adjoint and inverse of a square matrix, consistency and inconsistency of system of linear equations and solution of linear equations in two or three variables using inverse of a matrix.

4.2 Determinant

To every square matrix \(A = [a_{ij}] \) of order \(n \), we can associate a number (real or complex) called determinant of the square matrix A, where \(a_{ij} \) = \((i, j)\)th element of A.
This may be thought of as a function which associates each square matrix with a unique number (real or complex). If M is the set of square matrices, K is the set of numbers (real or complex) and $f : M \to K$ is defined by $f(A) = k$, where $A \in M$ and $k \in K$, then $f(A)$ is called the determinant of A. It is also denoted by $|A|$ or $\det A$ or Δ.

If $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, then determinant of A is written as $|A| = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = \det(A)$

Remarks

(i) For matrix A, $|A|$ is read as determinant of A and not modulus of A.
(ii) Only square matrices have determinants.

4.2.1 Determinant of a matrix of order one

Let $A = [a]$ be the matrix of order 1, then determinant of A is defined to be equal to a

4.2.2 Determinant of a matrix of order two

Let $A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$ be a matrix of order 2×2,

then the determinant of A is defined as:

$$\det(A) = |A| = \Delta = a_{11}a_{22} - a_{12}a_{21}$$

Example 1 Evaluate $\begin{vmatrix} 2 & 4 \\ -1 & 2 \end{vmatrix}$.

Solution We have $\begin{vmatrix} 2 & 4 \\ -1 & 2 \end{vmatrix} = 2(2) - 4(-1) = 4 + 4 = 8$.

Example 2 Evaluate $\begin{vmatrix} x & x + 1 \\ x - 1 & x \end{vmatrix}$

Solution We have

$$\begin{vmatrix} x & x + 1 \\ x - 1 & x \end{vmatrix} = x(x) - (x + 1)(x - 1) = x^2 - (x^2 - 1) = x^2 - x^2 + 1 = 1$$

4.2.3 Determinant of a matrix of order 3×3

Determinant of a matrix of order three can be determined by expressing it in terms of second order determinants. This is known as expansion of a determinant along a row (or a column). There are six ways of expanding a determinant of order
3 corresponding to each of three rows (R₁, R₂ and R₃) and three columns (C₁, C₂ and C₃) giving the same value as shown below.

Consider the determinant of square matrix \(A = [a_{ij}]_{3 \times 3} \)

i.e.,
\[
| A | = \begin{vmatrix}
 a_{11} & a_{12} & a_{13} \\
 a_{21} & a_{22} & a_{23} \\
 a_{31} & a_{32} & a_{33}
\end{vmatrix}
\]

Expansion along first Row (R₁)

Step 1 Multiply first element \(a_{11} \) of R₁ by \((-1)^{1+1} \) \([(-1)^{\text{sum of suffixes in } a_{11}}]\) and with the second order determinant obtained by deleting the elements of first row (R₁) and first column (C₁) of \(| A |\) as \(a_{11} \) lies in R₁ and C₁,

i.e.,
\[
(-1)^{1+1} a_{11} \begin{vmatrix}
 a_{22} & a_{23} \\
 a_{32} & a_{33}
\end{vmatrix}
\]

Step 2 Multiply 2nd element \(a_{12} \) of R₁ by \((-1)^{1+2} \) \([(-1)^{\text{sum of suffixes in } a_{12}}]\) and the second order determinant obtained by deleting elements of first row (R₁) and 2nd column (C₂) of \(| A |\) as \(a_{12} \) lies in R₁ and C₂,

i.e.,
\[
(-1)^{1+2} a_{12} \begin{vmatrix}
 a_{21} & a_{23} \\
 a_{31} & a_{33}
\end{vmatrix}
\]

Step 3 Multiply third element \(a_{13} \) of R₁ by \((-1)^{1+3} \) \([(-1)^{\text{sum of suffixes in } a_{13}}]\) and the second order determinant obtained by deleting elements of first row (R₁) and third column (C₃) of \(| A |\) as \(a_{13} \) lies in R₁ and C₃,

i.e.,
\[
(-1)^{1+3} a_{13} \begin{vmatrix}
 a_{21} & a_{22} \\
 a_{31} & a_{32}
\end{vmatrix}
\]

Step 4 Now the expansion of determinant of A, that is, \(| A |\) written as sum of all three terms obtained in steps 1, 2 and 3 above is given by

\[
\det A = |A| = (-1)^{1+1} a_{11} \begin{vmatrix}
 a_{22} & a_{23} \\
 a_{32} & a_{33}
\end{vmatrix}
+ (-1)^{1+2} a_{12} \begin{vmatrix}
 a_{21} & a_{23} \\
 a_{31} & a_{33}
\end{vmatrix}
+ (-1)^{1+3} a_{13} \begin{vmatrix}
 a_{21} & a_{22} \\
 a_{31} & a_{32}
\end{vmatrix}
\]

or

\[
|A| = a_{11} (a_{22} a_{33} - a_{23} a_{32}) - a_{12} (a_{21} a_{33} - a_{23} a_{31}) + a_{13} (a_{21} a_{32} - a_{22} a_{31})
\]

2019-20
\[
\begin{align*}
= & \ a_{11} \ a_{22} \ a_{33} - a_{11} \ a_{32} \ a_{23} - a_{12} \ a_{21} \ a_{33} + a_{12} \ a_{31} \ a_{23} + a_{13} \ a_{21} \ a_{32} \\
& - a_{13} \ a_{31} \ a_{22}
\end{align*}
\]... (1)

Note We shall apply all four steps together.

Expansion along second row \((R_2)\)

\[
\begin{align*}
\left| A \right| & = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} \\
& = a_{12} \ a_{23} \ a_{13} + (-1)^2 \ a_{22} \ a_{13} \ a_{31} \\
& + (-1)^3 \ a_{23} \ a_{12} \ a_{3} \\
& = a_{12} \ a_{23} \ a_{13} + a_{13} \ a_{21} \ a_{32} - a_{12} \ a_{21} \ a_{33} \\
& + a_{13} \ a_{21} \ a_{32} \\
& - a_{13} \ a_{21} \ a_{33} + a_{12} \ a_{23} \ a_{31} + a_{13} \ a_{21} \ a_{32} \\
& = -a_{13} \ a_{21} \ a_{33} - a_{12} \ a_{23} \ a_{31} - a_{13} \ a_{21} \ a_{32} \\
& + a_{12} \ a_{23} \ a_{31} + a_{13} \ a_{21} \ a_{32} \\
& + a_{13} \ a_{21} \ a_{33} \\
& = -a_{13} \ a_{21} \ a_{33} - a_{12} \ a_{23} \ a_{3}
\end{align*}
\]... (2)

Expansion along first Column \((C_1)\)

\[
\begin{align*}
\left| A \right| & = a_{11} \ (-1)^{1+1} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} + a_{21} \ (-1)^{2+1} \begin{vmatrix} a_{12} & a_{13} \\ a_{32} & a_{33} \end{vmatrix} \\
& + a_{31} \ (-1)^{3+1} \begin{vmatrix} a_{12} & a_{13} \\ a_{22} & a_{23} \end{vmatrix} \\
& = a_{11} \ (a_{22} \ a_{33} - a_{23} \ a_{32}) - a_{21} \ (a_{12} \ a_{33} - a_{13} \ a_{32}) + a_{31} \ (a_{12} \ a_{23} - a_{13} \ a_{22})
\end{align*}
\]
\[|A| = a_{11} a_{22} a_{33} - a_{11} a_{23} a_{32} - a_{12} a_{21} a_{33} + a_{12} a_{23} a_{31} + a_{13} a_{21} a_{32} - a_{13} a_{22} a_{31} \]

\[= a_{11} a_{22} a_{33} - a_{11} a_{23} a_{32} - a_{12} a_{21} a_{33} + a_{12} a_{23} a_{31} + a_{13} a_{21} a_{32} - a_{13} a_{22} a_{31} \]

... (3)

Clearly, values of \(|A| \) in (1), (2) and (3) are equal. It is left as an exercise to the reader to verify that the values of \(|A| \) by expanding along \(R_3, C_2 \) and \(C_3 \) are equal to the value of \(|A| \) obtained in (1), (2) or (3).

Hence, expanding a determinant along any row or column gives same value.

Remarks

(i) For easier calculations, we shall expand the determinant along that row or column which contains maximum number of zeros.

(ii) While expanding, instead of multiplying by \((-1)^{i+j}\), we can multiply by +1 or –1 according as \((i+j)\) is even or odd.

(iii) Let \(A = \begin{bmatrix} 2 & 2 \\ 4 & 0 \end{bmatrix} \) and \(B = \begin{bmatrix} 1 & 1 \\ 2 & 0 \end{bmatrix} \). Then, it is easy to verify that \(A = 2B \). Also, \(|A| = 0 - 8 = -8 \) and \(|B| = 0 - 2 = -2 \).

Observe that, \(|A| = 4(-2) = 2^2 |B| \) or \(|A| = 2^n |B| \), where \(n = 2 \) is the order of square matrices \(A \) and \(B \).

In general, if \(A = kB \) where \(A \) and \(B \) are square matrices of order \(n \), then \(|A| = k^n |B| \), where \(n = 1, 2, 3 \).

Example 3 Evaluate the determinant \(\Delta = \begin{vmatrix} 1 & 2 & 4 \\ -1 & 3 & 0 \\ 4 & 1 & 0 \end{vmatrix} \).

Solution Note that in the third column, two entries are zero. So expanding along third column (\(C_3 \)), we get

\[\Delta = 4 \begin{vmatrix} -1 & 3 \\ 4 & 1 \end{vmatrix} - 0 \begin{vmatrix} 1 & 2 \\ 4 & 1 \end{vmatrix} + 0 \begin{vmatrix} 1 & 2 \\ -1 & 3 \end{vmatrix} \]

\[= 4(-1-12) - 0 + 0 = -52 \]

Example 4 Evaluate \(\Delta = \begin{vmatrix} 0 & \sin \alpha & -\cos \alpha \\ -\sin \alpha & 0 & \sin \beta \\ \cos \alpha & -\sin \beta & 0 \end{vmatrix} \).
Solution Expanding along R_1, we get

$$\Delta = 0 \begin{vmatrix} 0 & \sin \beta & - \sin \alpha \sin \beta \\ - \sin \beta & 0 & - \cos \alpha \sin \beta \\ - \sin \alpha & - \cos \alpha & - \sin \beta \end{vmatrix}$$

$$= 0 - \sin \alpha (0 - \sin \beta \cos \alpha - \cos \alpha (\sin \alpha \sin \beta - 0))$$

$$= \sin \alpha \sin \beta \cos \alpha - \cos \alpha \sin \alpha \sin \beta = 0$$

Example 5 Find values of x for which $\begin{vmatrix} 3 & x \\ x & 1 \end{vmatrix} = \begin{vmatrix} 3 & 2 \\ 4 & 1 \end{vmatrix}$.

Solution We have $\begin{vmatrix} 3 & x \\ x & 1 \end{vmatrix} = \begin{vmatrix} 3 & 2 \\ 4 & 1 \end{vmatrix}$

i.e. $3 - x^2 = 3 - 8$

i.e. $x^2 = 8$

Hence $x = \pm 2\sqrt{2}$

EXERCISE 4.1

Evaluate the determinants in Exercises 1 and 2.

1. $\begin{vmatrix} 2 & 4 \\ -5 & -1 \end{vmatrix}$

2. (i) $\begin{vmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{vmatrix}$ (ii) $\begin{vmatrix} x^2 - x + 1 & x - 1 \\ x + 1 & x + 1 \end{vmatrix}$

3. If $A = \begin{bmatrix} 1 & 2 \\ 4 & 2 \end{bmatrix}$, then show that $|2A| = 4 |A|$

4. If $A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 4 \end{bmatrix}$, then show that $|3A| = 27 |A|$

5. Evaluate the determinants

 (i) $\begin{vmatrix} 3 & -1 & -2 \\ 0 & 0 & -1 \\ 3 & -5 & 0 \end{vmatrix}$ (ii) $\begin{vmatrix} 3 & -4 & 5 \\ 1 & 1 & -2 \\ 2 & 3 & 1 \end{vmatrix}$
If \(A = \begin{pmatrix} 1 & 1 & -2 \\ 2 & 1 & -3 \\ 5 & 4 & -9 \end{pmatrix} \), find \(|A| \).

7. Find values of \(x \), if

(i) \(\begin{pmatrix} 2 & 4 \\ 5 & 1 \end{pmatrix} = \begin{pmatrix} 2x & 4 \\ 6 & x \end{pmatrix} \)

(ii) \(\begin{pmatrix} 2 & 3 \\ 4 & 5 \end{pmatrix} = \begin{pmatrix} x & 3 \\ 2x & 5 \end{pmatrix} \)

8. If \(\begin{vmatrix} x & 2 \\ 18 & x \end{vmatrix} = \begin{vmatrix} 6 & 2 \\ 18 & 6 \end{vmatrix} \), then \(x \) is equal to

(A) 6 (B) ± 6 (C) − 6 (D) 0

4.3 Properties of Determinants

In the previous section, we have learnt how to expand the determinants. In this section, we will study some properties of determinants which simplifies its evaluation by obtaining maximum number of zeros in a row or a column. These properties are true for determinants of any order. However, we shall restrict ourselves upto determinants of order 3 only.

Property 1 The value of the determinant remains unchanged if its rows and columns are interchanged.

Verification Let \(\Delta = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} \)

Expanding along first row, we get

\[
\Delta = a_1 \begin{vmatrix} b_2 & b_3 \\ c_2 & c_3 \end{vmatrix} - a_2 \begin{vmatrix} b_1 & b_3 \\ c_1 & c_3 \end{vmatrix} + a_3 \begin{vmatrix} b_1 & b_2 \\ c_1 & c_2 \end{vmatrix}
\]

By interchanging the rows and columns of \(\Delta \), we get the determinant

\[
\Delta_i = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}
\]
Expanding Δ_1 along first column, we get

$$\Delta_1 = a_1 (b_2 c_3 - c_2 b_3) - a_2 (b_1 c_3 - b_3 c_1) + a_3 (b_1 c_2 - b_2 c_1)$$

Hence $\Delta = \Delta_1$

Remark It follows from above property that if A is a square matrix, then $\det (A) = \det (A')$, where A' = transpose of A.

Note If $R_i = i^{th}$ row and $C_i = i^{th}$ column, then for interchange of row and columns, we will symbolically write $C_i \leftrightarrow R_i$.

Let us verify the above property by example.

Example 6 Verify Property 1 for $\Delta = \begin{vmatrix} 2 & -3 & 5 \\ 6 & 0 & 4 \\ 1 & 5 & -7 \end{vmatrix}$

Solution Expanding the determinant along first row, we have

$$\Delta = 2 \begin{vmatrix} 0 & 4 \\ 5 & -7 \end{vmatrix} - (-3) \begin{vmatrix} 6 & 4 \\ 1 & -7 \end{vmatrix} + 5 \begin{vmatrix} 6 & 0 \\ 1 & 5 \end{vmatrix} = 2 (0 - 20) + 3 (-42 - 4) + 5 (30 - 0) = -40 - 138 + 150 = -28$$

By interchanging rows and columns, we get

$$\Delta_1 = \begin{vmatrix} 2 & 6 & 1 \\ -3 & 0 & 5 \\ 5 & 4 & -7 \end{vmatrix} \quad \text{(Expanding along first column)}$$

$$\Delta_1 = 2 \begin{vmatrix} 0 & 5 \\ 4 & -7 \end{vmatrix} - (-3) \begin{vmatrix} 6 & 1 \\ 4 & -7 \end{vmatrix} + 5 \begin{vmatrix} 6 & 1 \\ 0 & 5 \end{vmatrix} = 2 (0 - 20) + 3 (-42 - 4) + 5 (30 - 0) = -40 - 138 + 150 = -28$$

Clearly $\Delta = \Delta_1$

Hence, Property 1 is verified.

Property 2 If any two rows (or columns) of a determinant are interchanged, then sign of determinant changes.

Verification Let $\Delta = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$
Expanding along first row, we get
\[
\Delta = a_1 (b_2 c_3 - b_3 c_2) - a_2 (b_1 c_3 - b_3 c_1) + a_3 (b_1 c_2 - b_2 c_1)
\]
Interchanging first and third rows, the new determinant obtained is given by
\[
\Delta_1 = \begin{vmatrix} c_1 & c_2 & c_3 \\ b_1 & b_2 & b_3 \\ a_1 & a_2 & a_3 \end{vmatrix}
\]
Expanding along third row, we get
\[
\Delta_1 = a_1 (c_2 b_3 - b_2 c_3) - a_2 (c_1 b_3 - b_3 c_1) + a_3 (b_1 c_2 - b_2 c_1)
\]
Clearly \(\Delta_1 = -\Delta \)
Similarly, we can verify the result by interchanging any two columns.

Note We can denote the interchange of rows by \(R_i \leftrightarrow R_j \) and interchange of columns by \(C_i \leftrightarrow C_j \).

Example 7 Verify Property 2 for \(\Delta = \begin{vmatrix} 2 & -3 & 5 \\ 6 & 0 & 4 \\ 1 & 5 & -7 \end{vmatrix} \).

Solution
\[
\Delta = \begin{vmatrix} 2 & -3 & 5 \\ 6 & 0 & 4 \\ 1 & 5 & -7 \end{vmatrix} = -28 \text{ (See Example 6)}
\]
Interchanging rows \(R_2 \) and \(R_3 \) i.e., \(R_2 \leftrightarrow R_3 \), we have
\[
\Delta_1 = \begin{vmatrix} 2 & -3 & 5 \\ 1 & 5 & -7 \\ 6 & 0 & 4 \end{vmatrix}
\]
Expanding the determinant \(\Delta_1 \) along first row, we have
\[
\Delta_1 = 2 \begin{vmatrix} 0 & -7 \\ 6 & 4 \end{vmatrix} - (-3) \begin{vmatrix} 1 & -7 \\ 6 & 4 \end{vmatrix} + 5 \begin{vmatrix} 1 & 5 \\ 6 & 0 \end{vmatrix}
\]
\[
= 2 (20 - 0) + 3 (4 + 42) + 5 (0 - 30)
\]
\[
= 40 + 150 - 150 = 28
\]
Clearly \[\Delta_1 = -\Delta \]

Hence, Property 2 is verified.

Property 3 If any two rows (or columns) of a determinant are identical (all corresponding elements are same), then value of determinant is zero.

Proof If we interchange the identical rows (or columns) of the determinant \(\Delta \), then \(\Delta \) does not change. However, by Property 2, it follows that \(\Delta \) has changed its sign

Therefore \[\Delta = -\Delta \]

or \[\Delta = 0 \]

Let us verify the above property by an example.

Example 8 Evaluate \(\Delta = \begin{vmatrix} 3 & 2 & 3 \\ 2 & 2 & 3 \\ 3 & 2 & 3 \end{vmatrix} \)

Solution Expanding along first row, we get

\[\Delta = 3 (6 - 6) - 2 (6 - 9) + 3 (4 - 6) \]

\[= 0 - 2 (-3) + 3 (-2) = 6 - 6 = 0 \]

Here \(R_1 \) and \(R_3 \) are identical.

Property 4 If each element of a row (or a column) of a determinant is multiplied by a constant \(k \), then its value gets multiplied by \(k \).

Verification Let \(\Delta = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} \)

and \(\Delta_1 \) be the determinant obtained by multiplying the elements of the first row by \(k \).

Then

\[\Delta_1 = \begin{vmatrix} ka_1 & kb_1 & kc_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} \]

Expanding along first row, we get

\[\Delta_1 = k \left[a_1 (b_2 c_3 - b_3 c_2) - b_1 (a_2 c_3 - c_2 a_3) + c_1 (a_2 b_3 - b_2 a_3) \right] \]

\[= k \left[a_1 (b_2 c_3 - b_3 c_2) - b_1 (a_2 c_3 - c_2 a_3) + c_1 (a_2 b_3 - b_2 a_3) \right] \]

\[= k \Delta \]
Hence

\[
\begin{vmatrix}
 k a_1 & k b_1 & k c_1 \\
 a_2 & b_2 & c_2 \\
 a_3 & b_3 & c_3 \\
\end{vmatrix} = k \begin{vmatrix}
 a_1 & b_1 & c_1 \\
 a_2 & b_2 & c_2 \\
 a_3 & b_3 & c_3 \\
\end{vmatrix}
\]

Remarks

(i) By this property, we can take out any common factor from any one row or any one column of a given determinant.

(ii) If corresponding elements of any two rows (or columns) of a determinant are proportional (in the same ratio), then its value is zero. For example

\[
\begin{vmatrix}
 a_1 & a_2 & a_3 \\
 b_1 & b_2 & b_3 \\
 k a_1 & k a_2 & k a_3 \\
\end{vmatrix} = 0 \text{ (rows } R_1 \text{ and } R_2 \text{ are proportional)}
\]

Example 9 Evaluate

\[
\begin{vmatrix}
 102 & 18 & 36 \\
 1 & 3 & 4 \\
 17 & 3 & 6 \\
\end{vmatrix}
\]

Solution Note that

\[
\begin{vmatrix}
 102 & 18 & 36 \\
 1 & 3 & 4 \\
 17 & 3 & 6 \\
\end{vmatrix} = \begin{vmatrix}
 6(17) & 6(3) & 6(6) \\
 1 & 3 & 4 \\
 17 & 3 & 6 \\
\end{vmatrix} = 0
\]

(Using Properties 3 and 4)

Property 5 If some or all elements of a row or column of a determinant are expressed as sum of two (or more) terms, then the determinant can be expressed as sum of two (or more) determinants.

For example,

\[
\begin{vmatrix}
 a_1 + \lambda_1 & a_2 + \lambda_2 & a_3 + \lambda_3 \\
 b_1 & b_2 & b_3 \\
 c_1 & c_2 & c_3 \\
\end{vmatrix} = \begin{vmatrix}
 a_1 & a_2 & a_3 \\
 b_1 & b_2 & b_3 \\
 c_1 & c_2 & c_3 \\
\end{vmatrix} + \begin{vmatrix}
 \lambda_1 & \lambda_2 & \lambda_3 \\
 b_1 & b_2 & b_3 \\
 c_1 & c_2 & c_3 \\
\end{vmatrix}
\]

Verification L.H.S. =

\[
\begin{vmatrix}
 a_1 + \lambda_1 & a_2 + \lambda_2 & a_3 + \lambda_3 \\
 b_1 & b_2 & b_3 \\
 c_1 & c_2 & c_3 \\
\end{vmatrix}
\]

2019-20
Expanding the determinants along the first row, we get
\[
\Delta = (a_1 + \lambda_1) (b_2 c_3 - c_2 b_3) - (a_2 + \lambda_2) (b_1 c_3 - b_3 c_1) \\
+ (a_3 + \lambda_3) (b_1 c_2 - b_2 c_1)
\]
\[
= a_1 (b_2 c_3 - c_2 b_3) - a_2 (b_1 c_3 - b_3 c_1) + a_3 (b_1 c_2 - b_2 c_1) \\
+ \lambda_1 (b_2 c_3 - c_2 b_3) - \lambda_2 (b_1 c_3 - b_3 c_1) + \lambda_3 (b_1 c_2 - b_2 c_1)
\]
(by rearranging terms)

\[
= \begin{vmatrix}
 a_1 & a_2 & a_3 \\
 b_1 & b_2 & b_3 \\
 c_1 & c_2 & c_3
\end{vmatrix}
+ \begin{vmatrix}
 \lambda_1 & \lambda_2 & \lambda_3 \\
 b_1 & b_2 & b_3 \\
 c_1 & c_2 & c_3
\end{vmatrix}
= \text{R.H.S.}
\]

Similarly, we may verify Property 5 for other rows or columns.

Example 10 Show that
\[
\begin{vmatrix}
 a & b & c \\
 a + 2x & b + 2y & c + 2z \\
 x & y & z
\end{vmatrix} = 0
\]

Solution We have
\[
\begin{vmatrix}
 a & b & c \\
 a + 2x & b + 2y & c + 2z \\
 x & y & z
\end{vmatrix} = \begin{vmatrix}
 a & b & c \\
 2x & 2y & 2z \\
 x & y & z
\end{vmatrix} + \begin{vmatrix}
 a & b & c \\
 x & y & z \\
 c & c & c
\end{vmatrix}
\]
(by Property 5)
\[
= 0 + 0 = 0 \quad \text{(Using Property 3 and Property 4)}
\]

Property 6 If, to each element of any row or column of a determinant, the equimultiples of corresponding elements of other row (or column) are added, then value of determinant remains the same, i.e., the value of determinant remain same if we apply the operation \(R_i \to R_i + kR_j\) or \(C_i \to C_i + kC_j\).

Verification

Let
\[
\Delta = \begin{vmatrix}
 a_1 & a_2 & a_3 \\
 b_1 & b_2 & b_3 \\
 c_1 & c_2 & c_3
\end{vmatrix}
\]
and
\[
\Delta_1 = \begin{vmatrix}
 a_1 + k c_1 & a_2 + k c_2 & a_3 + k c_3 \\
 b_1 & b_2 & b_3 \\
 c_1 & c_2 & c_3
\end{vmatrix}
\]

where \(\Delta_1\) is obtained by the operation \(R_1 \to R_1 + kR_j\).

Here, we have multiplied the elements of the third row (\(R_3\)) by a constant \(k\) and added them to the corresponding elements of the first row (\(R_1\)).

Symbolically, we write this operation as \(R_1 \to R_1 + k R_k\).
Now, again

\[\Delta_1 = \begin{vmatrix} a & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} + \begin{vmatrix} k c_1 & k c_2 & k c_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} \] (Using Property 5)

\[= \Delta + 0 \] (since \(R_1 \) and \(R_3 \) are proportional)

Hence \(\Delta = \Delta_1 \)

Remarks

(i) If \(\Delta_1 \) is the determinant obtained by applying \(R_i \rightarrow k R_i \) or \(C_i \rightarrow k C_i \) to the determinant \(\Delta \), then \(\Delta_i = k \Delta \).

(ii) If more than one operation like \(R_i \rightarrow R_i + k R_j \) is done in one step, care should be taken to see that a row that is affected in one operation should not be used in another operation. A similar remark applies to column operations.

Example 11 Prove that

\[\begin{vmatrix} 3 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 6 & 3 \end{vmatrix} = a^3. \]

Solution Applying operations \(R_2 \rightarrow R_2 - 2R_1 \) and \(R_3 \rightarrow R_3 - 3R_1 \) to the given determinant \(\Delta \), we have

\[\Delta = \begin{vmatrix} a & a + b & a + b + c \\ 0 & a & 2a + b \\ 0 & 3a & 7a + 3b \end{vmatrix} \]

Now applying \(R_3 \rightarrow R_3 - 3R_2 \), we get

\[\Delta = \begin{vmatrix} a & a + b & a + b + c \\ 0 & a & 2a + b \\ 0 & 0 & a \end{vmatrix} \]

Expanding along \(C_1 \), we obtain

\[\Delta = a \begin{vmatrix} a & 2a + b \\ 0 & a \end{vmatrix} + 0 + 0 \]

\[= a (a^2 - 0) = a (a^2) = a^3 \]
Example 12 Without expanding, prove that
\[\Delta = \begin{vmatrix} x + y & y + z & z + x \\ z & x & y \\ 1 & 1 & 1 \end{vmatrix} = 0 \]

Solution Applying R₁ → R₁ + R₂ to Δ, we get
\[\Delta = \begin{vmatrix} x + y + z & x + y + z & x + y + z \\ z & x & y \\ 1 & 1 & 1 \end{vmatrix} \]
Since the elements of R₁ and R₃ are proportional, Δ = 0.

Example 13 Evaluate
\[\Delta = \begin{vmatrix} 1 & a & bc \\ 1 & b & ca \\ 1 & c & ab \end{vmatrix} \]

Solution Applying R₂ → R₂ – R₁ and R₃ → R₃ – R₁, we get
\[\Delta = \begin{vmatrix} 1 & a & bc \\ 0 & b - a & c (a - b) \\ 0 & c - a & b (a - c) \end{vmatrix} \]
Taking factors (b – a) and (c – a) common from R₂ and R₃, respectively, we get
\[\Delta = (b - a) (c - a) \begin{vmatrix} 1 & a & bc \\ 0 & 1 & -c \\ 0 & 1 & -b \end{vmatrix} \]
\[= (b - a) (c - a) [(-b + c)] \text{ (Expanding along first column)} \]
\[= (a - b) (b - c) (c - a) \]

Example 14 Prove that
\[\begin{vmatrix} b + c & a & a \\ b & c + a & b \\ c & c & a + b \end{vmatrix} = 4abc \]

Solution Let \[\Delta = \begin{vmatrix} b + c & a & a \\ b & c + a & b \\ c & c & a + b \end{vmatrix} \]
Applying $R_1 \rightarrow R_1 - R_2 - R_3$ to Δ, we get

$$\Delta = \begin{vmatrix} 0 & -2c & -2b \\ b & c + a & b \\ c & c & a + b \end{vmatrix}$$

Expanding along R_1, we obtain

$$\Delta = 0 \begin{vmatrix} c + a & b \\ c & a + b \end{vmatrix} - (-2c) \begin{vmatrix} b & b \\ c & a + b \end{vmatrix} + (-2b) \begin{vmatrix} b & c + a \\ c & c \end{vmatrix}$$

$$= 2c (a + b - bc) - 2b (c - c^2 - ac)$$

$$= 2a b c + 2 cb^2 - 2 bc^2 - 2 b^2 c + 2 bc^2 + 2 abc$$

$$= 4 abc$$

Example 15 If x, y, z are different and $\Delta = \begin{vmatrix} x & x^2 & 1+x^3 \\ y & y^2 & 1+y^3 \\ z & z^2 & 1+z^3 \end{vmatrix}$, then show that $1 + xyz = 0$

Solution We have

$$\Delta = \begin{vmatrix} x & x^2 & 1+x^3 \\ y & y^2 & 1+y^3 \\ z & z^2 & 1+z^3 \end{vmatrix}$$

$$= \begin{vmatrix} x & x^2 & 1 \\ y & y^2 & 1+y \\ z & z^2 & 1+z \end{vmatrix}$$

$$(\text{Using Property 5})$$

$$= \begin{vmatrix} 1 & x & x^2 \\ 1 & y & y^2 + xyz \\ 1 & z & z^2 \end{vmatrix}$$

$$(\text{Using } C_3 \leftrightarrow C_2 \text{ and then } C_1 \leftrightarrow C_2)$$

$$= \begin{vmatrix} 1 & x & x^2 \\ 1 & y & y^2 \\ 1 & z & z^2 \end{vmatrix}$$

$$(1+xyz)$$

$$= \begin{vmatrix} 1 & x & x^2 \\ 1 & y & y^2 \\ 1 & z & z^2 \end{vmatrix}$$
Taking out common factor \((y - x)\) from \(R_2\) and \((z - x)\) from \(R_3\), we get

\[
\Delta = \begin{vmatrix} 1 & x & x^2 \\ 0 & y - x & y^2 - x^2 \\ 0 & z - x & z^2 - x^2 \end{vmatrix}
\]

(Using \(R_2 \rightarrow R_2 - R_1\) and \(R_3 \rightarrow R_3 - R_1\))

\[
= (1 + xyz) (y - x) (z - x) (z - y) \quad \text{(on expanding along } C_1)\]

Since \(\Delta = 0\) and \(x, y, z\) are all different, i.e., \(x - y \neq 0, y - z \neq 0, z - x \neq 0\), we get

\[1 + xyz = 0\]

Example 16 Show that

\[
\begin{vmatrix} 1 + a & 1 & 1 \\ 1 & 1 + b & 1 \\ 1 & 1 & 1 + c \end{vmatrix} + \begin{vmatrix} a & b & c \\ b & b & b \\ c & c & c \end{vmatrix} = 0
\]

Solution Taking out factors \(a, b, c\) common from \(R_1, R_2, R_3\), we get

\[
\begin{vmatrix} 1 + a & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 + c \end{vmatrix} = abc \left(1 + \frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right) = abc + bc + ca + ab
\]

Applying \(R_1 \rightarrow R_1 + R_2 + R_3\), we have

\[
\Delta = abc \begin{vmatrix} 1 + \frac{1}{a} + \frac{1}{b} + \frac{1}{c} \\ \frac{1}{a} + \frac{1}{b} + \frac{1}{c} \\ \frac{1}{a} + \frac{1}{b} + \frac{1}{c} \end{vmatrix}
\]

\[\Delta = abc \begin{vmatrix} \frac{1}{a} & \frac{1}{b} & \frac{1}{c} \\ \frac{1}{a} & \frac{1}{b} & \frac{1}{c} \\ \frac{1}{a} & \frac{1}{b} & \frac{1}{c} \end{vmatrix} = 0\]
Now applying $C_2 \rightarrow C_2 - C_1, C_3 \rightarrow C_3 - C_1$, we get

\[
\Delta = abc \left(1 + \frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right) \left[\begin{array}{ccc} 1 & 0 & 0 \\ \frac{1}{b} & 1 & 0 \\ \frac{1}{c} & 0 & 1 \end{array}\right]
\]

\[
= abc \left(1 + \frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right) \left[1(1-0)\right]
\]

\[
= abc \left(1 + \frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right) = abc + bc + ca + ab = \text{R.H.S.}
\]

Note Alternately try by applying $C_1 \rightarrow C_1 - C_2$ and $C_3 \rightarrow C_3 - C_2$, then apply $C_1 \rightarrow C_1 - aC_3$.

EXERCISE 4.2

Using the property of determinants and without expanding in Exercises 1 to 7, prove that:

1.
\[
\begin{vmatrix} x & a & x+a \\ y & b & y+b \\ z & c & z+c \end{vmatrix} = 0
\]

2.
\[
\begin{vmatrix} a-b & b-c & c-a \\ b-c & c-a & a-b \\ c-a & a-b & b-c \end{vmatrix} = 0
\]

3.
\[
\begin{vmatrix} 2 & 7 & 65 \\ 3 & 8 & 75 \\ 5 & 9 & 86 \end{vmatrix} = 0
\]

4.
\[
\begin{vmatrix} 1 & bc & a(b+c) \\ 1 & ca & b(c+a) \\ 1 & ab & c(a+b) \end{vmatrix} = 0
\]

5.
\[
\begin{vmatrix} b+c & q+r & y+z \\ c+a & r+p & z+x \\ a+b & p+q & x+y \end{vmatrix} = 2 \begin{vmatrix} a & p & x \\ b & q & y \\ c & r & z \end{vmatrix}
\]
6. \[
\begin{vmatrix}
0 & a & -b \\
-a & 0 & -c \\
b & c & 0
\end{vmatrix} = 0
\]
\[
\begin{vmatrix}
-a^2 & ab & ac \\
ba & -b^2 & bc \\
ca & cb & -c^2
\end{vmatrix} = 4a^2b^2c^2
\]

By using properties of determinants, in Exercises 8 to 14, show that:

8. (i) \[
\begin{vmatrix}
1 & a & a^2 \\
1 & b & b^2 \\
1 & c & c^2
\end{vmatrix} = (a - b)(b - c)(c - a)
\]
(ii) \[
\begin{vmatrix}
1 & 1 & 1 \\
a & b & c \\
a^3 & b^3 & c^3
\end{vmatrix} = (a - b)(b - c)(c - a)(a + b + c)
\]

9. \[
\begin{vmatrix}
x & x^2 & yz \\
y & y^2 & zx \\
z & z^2 & xy
\end{vmatrix} = (x - y)(y - z)(z - x)(xy + yz + zx)
\]

10. (i) \[
\begin{vmatrix}
x + 4 & 2x & 2x \\
2x & x + 4 & 2x \\
2x & 2x & x + 4
\end{vmatrix} = (5x + 4)(4 - x)^2
\]
(ii) \[
\begin{vmatrix}
y + k & y & y \\
y & y + k & y \\
y & y & y + k
\end{vmatrix} = k^2(3y + k)
\]

11. (i) \[
\begin{vmatrix}
a - b - c & 2a & 2a \\
2b & b - c - a & 2b \\
2c & 2c & c - a - b
\end{vmatrix} = (a + b + c)^3
\]
(ii) \[
\begin{vmatrix}
x + y + 2z & x & y \\
z & y + z + 2x & y \\
z & x & z + x + 2y
\end{vmatrix} = 2(x + y + z)^3
\]

2019-20
12. \[
\begin{vmatrix}
1 & x & x^2 \\
x^2 & 1 & x \\
x & x^2 & 1 \\
\end{vmatrix}
= (1 - x^3)^2
\]

13. \[
\begin{vmatrix}
1 + a^2 - b^2 & 2ab & -2b \\
2ab & 1 - a^2 + b^2 & 2a \\
2b & -2a & 1 - a^2 - b^2 \\
\end{vmatrix}
= (1 + a^2 + b^2)^3
\]

14. \[
\begin{vmatrix}
a^2 + 1 & ab & ac \\
ab & b^2 + 1 & bc \\
ca & cb & c^2 + 1 \\
\end{vmatrix}
= 1 + a^2 + b^2 + c^2
\]

Choose the correct answer in Exercises 15 and 16.

15. Let \(A \) be a square matrix of order \(3 \times 3 \), then \(|kA| \) is equal to
 (A) \(k|A| \) (B) \(k^2|A| \) (C) \(k^3|A| \) (D) \(3k|A| \)

16. Which of the following is correct
 (A) Determinant is a square matrix.
 (B) Determinant is a number associated to a matrix.
 (C) Determinant is a number associated to a square matrix.
 (D) None of these

4.4 Area of a Triangle

In earlier classes, we have studied that the area of a triangle whose vertices are \((x_1, y_1), (x_2, y_2)\) and \((x_3, y_3)\), is given by the expression \(\frac{1}{2} [x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)]\). Now this expression can be written in the form of a determinant as

\[
\Delta = \frac{1}{2} \begin{vmatrix}
x_1 & y_1 & 1 \\
x_2 & y_2 & 1 \\
x_3 & y_3 & 1 \\
\end{vmatrix}
\]

Remarks
(i) Since area is a positive quantity, we always take the absolute value of the determinant in (1).
(ii) If area is given, use both positive and negative values of the determinant for calculation.

(iii) The area of the triangle formed by three collinear points is zero.

Example 17 Find the area of the triangle whose vertices are (3, 8), (– 4, 2) and (5, 1).

Solution The area of triangle is given by

\[
\Delta = \frac{1}{2} \begin{vmatrix} 3 & 8 & 1 \\ -4 & 2 & 1 \\ 5 & 1 & 1 \end{vmatrix}
\]

\[
= \frac{1}{2} \left[3(2-1) - 8(-4-5) + 1(-4-10) \right]
\]

\[
= \frac{1}{2} \left(3 + 72 - 14 \right) = \frac{61}{2}
\]

Example 18 Find the equation of the line joining A(1, 3) and B (0, 0) using determinants and find \(k \) if \(D(k, 0) \) is a point such that area of triangle ABD is 3 sq units.

Solution Let \(P(x, y) \) be any point on AB. Then, area of triangle ABP is zero (Why?). So

\[
\frac{1}{2} \begin{vmatrix} 0 & 0 & 1 \\ 1 & 3 & 1 \\ x & y & 1 \end{vmatrix} = 0
\]

This gives

\[
\frac{1}{2}(y - 3x) = 0 \text{ or } y = 3x,
\]

which is the equation of required line AB.

Also, since the area of the triangle ABD is 3 sq. units, we have

\[
\frac{1}{2} \begin{vmatrix} 1 & 3 & 1 \\ 0 & 0 & 1 \\ k & 0 & 1 \end{vmatrix} = \pm 3
\]

This gives, \(\frac{-3k}{2} = \pm 3 \), i.e., \(k = \mp 2 \).

EXERCISE 4.3

1. Find area of the triangle with vertices at the point given in each of the following:
 (i) (1, 0), (6, 0), (4, 3) \hspace{1cm} (ii) (2, 7), (1, 1), (10, 8)
 (iii) (–2, –3), (3, 2), (–1, –8)
2. Show that points
 A \((a, b + c)\), B \((b, c + a)\), C \((c, a + b)\) are collinear.

3. Find values of \(k\) if area of triangle is 4 sq. units and vertices are
 (i) \((k, 0), (4, 0), (0, 2)\)
 (ii) \((-2, 0), (0, 4), (0, k)\)

4. (i) Find equation of line joining \((1, 2)\) and \((3, 6)\) using determinants.
 (ii) Find equation of line joining \((3, 1)\) and \((9, 3)\) using determinants.

5. If area of triangle is 35 sq units with vertices \((2, – 6), (5, 4)\) and \((k, 4)\). Then \(k\) is
 (A) 12
 (B) –2
 (C) –12, –2
 (D) 12, –2

4.5 Minors and Cofactors

In this section, we will learn to write the expansion of a determinant in compact form using minors and cofactors.

Definition 1 Minor of an element \(a_{ij}\) of a determinant is the determinant obtained by deleting its \(i\)th row and \(j\)th column in which element \(a_{ij}\) lies. Minor of an element \(a_{ij}\) is denoted by \(M_{ij}\).

Remark Minor of an element of a determinant of order \(n(n \geq 2)\) is a determinant of order \(n – 1\).

Example 19 Find the minor of element 6 in the determinant
\[
\Delta = \begin{vmatrix}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9 \\
\end{vmatrix}
\]

Solution Since 6 lies in the second row and third column, its minor \(M_{23}\) is given by
\[
M_{23} = \begin{vmatrix}
1 & 2 \\
7 & 8 \\
\end{vmatrix} = 8 – 14 = – 6 \text{ (obtained by deleting } R_2 \text{ and } C_3 \text{ in } \Delta)\n\]

Definition 2 Cofactor of an element \(a_{ij}\), denoted by \(A_{ij}\) is defined by
\[
A_{ij} = (-1)^{i+j} M_{ij}, \text{ where } M_{ij} \text{ is minor of } a_{ij}.
\]

Example 20 Find minors and cofactors of all the elements of the determinant
\[
\begin{vmatrix}
1 & -2 \\
4 & 3 \\
\end{vmatrix}
\]

Solution Minor of the element \(a_{ij}\) is \(M_{ij}\)

Here \(a_{11} = 1\). So \(M_{11} = \text{Minor of } a_{11} = 3\)

\(M_{12} = \text{Minor of the element } a_{12} = 4\)

\(M_{21} = \text{Minor of the element } a_{21} = –2\)
M_{22} = \text{Minor of the element } a_{22} = 1 \\
Now, cofactor of \(a_{ij} \) is \(A_{ij} \). So \\
\(A_{11} = (-1)^{1+1} \ M_{11} = (-1)^2 (3) = 3 \) \\
\(A_{12} = (-1)^{1+2} \ M_{12} = (-1)^3 (4) = -4 \) \\
\(A_{21} = (-1)^{2+1} \ M_{21} = (-1)^3 (-2) = 2 \) \\
\(A_{22} = (-1)^{2+2} \ M_{22} = (-1)^4 (1) = 1 \)

Example 21 Find minors and cofactors of the elements \(a_{11}, a_{21} \) in the determinant

\[
\Delta = \begin{vmatrix}
 a_{11} & a_{12} & a_{13} \\
 a_{21} & a_{22} & a_{23} \\
 a_{31} & a_{32} & a_{33}
\end{vmatrix}
\]

Solution By definition of minors and cofactors, we have

Minor of \(a_{11} = M_{11} = \begin{vmatrix}
 a_{22} & a_{23} \\
 a_{32} & a_{33}
\end{vmatrix} = a_{22}a_{33} - a_{23}a_{32} \)

Cofactor of \(a_{11} = A_{11} = (-1)^{1+1} \ M_{11} = a_{22}a_{33} - a_{23}a_{32} \)

Minor of \(a_{21} = M_{21} = \begin{vmatrix}
 a_{12} & a_{13} \\
 a_{32} & a_{33}
\end{vmatrix} = a_{12}a_{33} - a_{13}a_{32} \)

Cofactor of \(a_{21} = A_{21} = (-1)^{2+1} \ M_{21} = (-1) (a_{12}a_{33} - a_{13}a_{32}) = -a_{12}a_{33} + a_{13}a_{32} \)

Remark Expanding the determinant \(\Delta \), in Example 21, along \(R_1 \), we have

\[
\Delta = (-1)^{1+1} a_{11} \begin{vmatrix}
 a_{22} & a_{23} \\
 a_{32} & a_{33}
\end{vmatrix} + (-1)^{1+2} a_{12} \begin{vmatrix}
 a_{21} & a_{23} \\
 a_{31} & a_{33}
\end{vmatrix} + (-1)^{1+3} a_{13} \begin{vmatrix}
 a_{21} & a_{22} \\
 a_{31} & a_{32}
\end{vmatrix}
\]

\[
= a_{11} A_{11} + a_{12} A_{12} + a_{13} A_{13}, \text{ where } A_{ij} \text{ is cofactor of } a_{ij}
\]

= sum of product of elements of \(R_1 \) with their corresponding cofactors

Similarly, \(\Delta \) can be calculated by other five ways of expansion that is along \(R_2, R_3, C_1, C_2 \) and \(C_3 \).

Hence \(\Delta = \) sum of the product of elements of any row (or column) with their corresponding cofactors.

Note If elements of a row (or column) are multiplied with cofactors of any other row (or column), then their sum is zero. For example,
\[\Delta = a_{11} A_{21} + a_{12} A_{22} + a_{13} A_{23} \]
\[= a_{11} (-1)^{1+1} \begin{vmatrix} a_{12} & a_{13} \\ a_{32} & a_{33} \end{vmatrix} + a_{12} (-1)^{1+2} \begin{vmatrix} a_{11} & a_{13} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} (-1)^{1+3} \begin{vmatrix} a_{11} & a_{12} \\ a_{31} & a_{32} \end{vmatrix} \]
\[= \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = 0 \text{ (since } R_1 \text{ and } R_2 \text{ are identical)} \]

Similarly, we can try for other rows and columns.

Example 22 Find minors and cofactors of the elements of the determinant

\[
\begin{vmatrix} 2 & -3 & 5 \\ 6 & 0 & 4 \\ 1 & 5 & -7 \end{vmatrix}
\]

and verify that \(a_{11} A_{31} + a_{12} A_{32} + a_{13} A_{33} = 0 \)

Solution We have \(M_{11} = \begin{vmatrix} 0 & 4 \\ 5 & -7 \end{vmatrix} = 0 - 20 = -20 \); \(A_{11} = (-1)^{1+1} (-20) = -20 \)

\(M_{12} = \begin{vmatrix} 6 & 4 \\ 1 & -7 \end{vmatrix} = 6(-7) - 4 = -42 - 4 = -46; \quad A_{12} = (-1)^{1+2} (-46) = 46 \)

\(M_{13} = \begin{vmatrix} 6 & 0 \\ 1 & 5 \end{vmatrix} = 6(5) - 0 = 30; \quad A_{13} = (-1)^{1+3} (30) = 30 \)

\(M_{21} = \begin{vmatrix} -3 & 5 \\ 5 & -7 \end{vmatrix} = -3(-7) - 5 = 21 - 25 = -4; \quad A_{21} = (-1)^{2+1} (-4) = 4 \)

\(M_{22} = \begin{vmatrix} 2 & 5 \\ 1 & -7 \end{vmatrix} = 2(-7) - 5 = -14 - 5 = -19; \quad A_{22} = (-1)^{2+2} (-19) = -19 \)

\(M_{23} = \begin{vmatrix} 2 & -3 \\ 1 & 5 \end{vmatrix} = 2(5) - (-3) = 10 + 3 = 13; \quad A_{23} = (-1)^{2+3} (13) = -13 \)

\(M_{31} = \begin{vmatrix} -3 & 5 \\ 0 & 4 \end{vmatrix} = -3(4) - 5 = -12 - 0 = -12; \quad A_{31} = (-1)^{3+1} (-12) = -12 \)

2019-20
\[M_{32} = \begin{vmatrix} 2 & 5 \\ 6 & 4 \end{vmatrix} = 8 - 30 = -22; \quad A_{32} = (-1)^{3+2}(-22) = 22 \]

and
\[M_{33} = \begin{vmatrix} 2 & 3 \\ 6 & 0 \end{vmatrix} = 0 + 18 = 18; \quad A_{33} = (-1)^{3+3}(18) = 18 \]

Now \[a_{11} = 2, \ a_{12} = -3, \ a_{13} = 5; \ A_{31} = -12, \ A_{32} = 22, \ A_{33} = 18 \]
So
\[a_{11} A_{31} + a_{12} A_{32} + a_{13} A_{33} \]
\[= 2(-12) + (-3)(22) + 5(18) = -24 - 66 + 90 = 0 \]

EXERCISE 4.4

Write Minors and Cofactors of the elements of following determinants:

1. (i) \(\begin{vmatrix} 2 & -4 \\ 0 & 3 \end{vmatrix} \) (ii) \(\begin{vmatrix} a & c \\ b & d \end{vmatrix} \)

 \[
 \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 4 \end{vmatrix} \]

2. (i) \(\begin{vmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix} \) (ii) \(\begin{vmatrix} 3 & 5 & -1 \\ 0 & 1 & 2 \end{vmatrix} \)

3. Using Cofactors of elements of second row, evaluate \(\Delta = \begin{vmatrix} 5 & 3 & 8 \\ 2 & 0 & 1 \\ 1 & 2 & 3 \end{vmatrix} \).

4. Using Cofactors of elements of third column, evaluate \(\Delta = \begin{vmatrix} 1 & x & yz \\ 1 & y & zx \\ 1 & z & xy \end{vmatrix} \).

5. If \(\Delta = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} \) and \(A_{ij} \) is Cofactors of \(a_{ij} \), then value of \(\Delta \) is given by

 (A) \(a_{11} A_{11} + a_{12} A_{21} + a_{13} A_{31} \)

 (B) \(a_{11} A_{11} + a_{12} A_{21} + a_{13} A_{31} \)

 (C) \(a_{21} A_{11} + a_{22} A_{21} + a_{23} A_{31} \)

 (D) \(a_{31} A_{11} + a_{32} A_{21} + a_{33} A_{31} \)

4.6 Adjoint and Inverse of a Matrix

In the previous chapter, we have studied inverse of a matrix. In this section, we shall discuss the condition for existence of inverse of a matrix.

To find inverse of a matrix \(A \), i.e., \(A^{-1} \) we shall first define adjoint of a matrix.
4.6.1 **Adjoint of a matrix**

Definition 3 The adjoint of a square matrix \(A = [a_{ij}]_{n \times n} \) is defined as the transpose of the matrix \([A_{ij}]_{n \times n} \), where \(A_{ij} \) is the cofactor of the element \(a_{ij} \). Adjoint of the matrix \(A \) is denoted by \(\text{adj} \ A \).

Let

\[
A = \begin{bmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{bmatrix}
\]

Then \(\text{adj} \ A = \text{Transpose of } \begin{bmatrix}
a_{11} & A_{12} & A_{13} \\
A_{21} & A_{22} & A_{23} \\
A_{31} & A_{32} & A_{33}
\end{bmatrix} = \begin{bmatrix}
a_{11} & A_{12} & A_{13} \\
A_{12} & A_{22} & A_{23} \\
A_{13} & A_{23} & A_{33}
\end{bmatrix} \)

Example 23 Find \(\text{adj} \ A \) for \(A = \begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix} \)

Solution We have \(A_{11} = 4, A_{12} = -1, A_{21} = -3, A_{22} = 2 \)

Hence \(\text{adj} \ A = \begin{bmatrix} A_{11} & A_{21} \\ A_{12} & A_{22} \end{bmatrix} = \begin{bmatrix} 4 & -3 \\ -1 & 2 \end{bmatrix} \)

Remark For a square matrix of order 2, given by

\[
A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}
\]

The \(\text{adj} \ A \) can also be obtained by interchanging \(a_{11} \) and \(a_{22} \) and by changing signs of \(a_{12} \) and \(a_{21} \), i.e.,

\[
\text{adj} \ A = \begin{bmatrix} a_{11} & -a_{22} \\ -a_{21} & a_{11} \end{bmatrix}
\]

We state the following theorem without proof.

Theorem 1 If \(A \) be any given square matrix of order \(n \), then

\[
A(\text{adj} \ A) = (\text{adj} \ A) \ A = |A|I,
\]

where \(I \) is the identity matrix of order \(n \).
Verification

Let \(A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \), then \(\text{adj} \ A = \begin{bmatrix} A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33} \end{bmatrix} \)

Since sum of product of elements of a row (or a column) with corresponding cofactors is equal to \(|A| \) and otherwise zero, we have

\[
A (\text{adj} \ A) = \begin{bmatrix} |A| & 0 & 0 \\ 0 & |A| & 0 \\ 0 & 0 & |A| \end{bmatrix} = |A| \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = |A| I
\]

Similarly, we can show \((\text{adj} \ A) A = |A| I \)

Hence \(A (\text{adj} \ A) = (\text{adj} \ A) A = |A| I \)

Definition 4 A square matrix \(A \) is said to be singular if \(|A| = 0 \).

For example, the determinant of matrix \(A = \begin{bmatrix} 1 & 2 \\ 4 & 8 \end{bmatrix} \) is zero.

Hence \(A \) is a singular matrix.

Definition 5 A square matrix \(A \) is said to be non-singular if \(|A| \neq 0 \)

Let \(A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \). Then \(|A| = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = 4 - 6 = -2 \neq 0 \).

Hence \(A \) is a nonsingular matrix.

We state the following theorems without proof.

Theorem 2 If \(A \) and \(B \) are nonsingular matrices of the same order, then \(AB \) and \(BA \) are also nonsingular matrices of the same order.

Theorem 3 The determinant of the product of matrices is equal to product of their respective determinants, that is, \(|AB| = |A| \ |B| \), where \(A \) and \(B \) are square matrices of the same order.

Remark We know that \((\text{adj} \ A) A = |A| I = \begin{bmatrix} |A| & 0 & 0 \\ 0 & |A| & 0 \\ 0 & 0 & |A| \end{bmatrix} \neq 0 \)
Writing determinants of matrices on both sides, we have

\[
\begin{vmatrix} (adj A) A \end{vmatrix} = \begin{vmatrix} |A| & 0 & 0 \\ 0 & |A| & 0 \\ 0 & 0 & |A| \end{vmatrix}
\]

i.e. \(|(adj A) A| |A| = 1 \) (Why?)

i.e. \(|(adj A)| |A| = |A|^3 \) (1)

In general, if \(A \) is a square matrix of order \(n \), then \(|adj(A)| = |A|^{n-1} \).

Theorem 4 A square matrix \(A \) is invertible if and only if \(A \) is nonsingular matrix.

Proof Let \(A \) be invertible matrix of order \(n \) and \(I \) be the identity matrix of order \(n \). Then, there exists a square matrix \(B \) of order \(n \) such that \(AB = BA = I \).

Now \(AB = I \). So \(|AB| = |I| \) or \(|A| |B| = 1 \) (since \(|I| = 1, |AB| = |A||B| \))

This gives \(|A| \neq 0 \). Hence \(A \) is nonsingular.

Conversely, let \(A \) be nonsingular. Then \(|A| \neq 0 \).

Now \(A (adj A) = (adj A) A = |A| I \) (Theorem 1)

or \(A \left(\frac{1}{|A|} adj A \right) = \left(\frac{1}{|A|} adj A \right) A = I \)

or \(AB = BA = I \), where \(B = \frac{1}{|A|} adj A \)

Thus \(A \) is invertible and \(A^{-1} = \frac{1}{|A|} adj A \)

Example 24 If \(A = \begin{bmatrix} 1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4 \end{bmatrix} \), then verify that \(A adj A = |A| I \). Also find \(A^{-1} \).

Solution We have \(|A| = 1 (16 - 9) -3 (4 - 3) + 3 (3 - 4) = 1 \neq 0 \)
Now \(A_{11} = 7, A_{12} = -1, A_{13} = -1, A_{21} = -3, A_{22} = 1, A_{23} = 0, A_{31} = -3, A_{32} = 0, A_{33} = 1 \)

Therefore

\[
\text{adj} A = \begin{bmatrix} 7 & -3 & -3 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix}
\]

Now

\[
A (\text{adj} A) = \begin{bmatrix} 7-3-3 & -3+3+0 & -3+0+3 \\ 7-4-3 & -3+4+0 & -3+0+3 \\ 7-3-4 & -3+3+0 & -3+0+4 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = (1) \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = |A|. I
\]

Also

\[
A^{-1} = \frac{1}{|A|} \text{adj} A = \frac{1}{1} \begin{bmatrix} 7 & -3 & -3 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 7 & -3 & -3 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix}
\]

Example 25 If \(A = \begin{bmatrix} 2 & 3 \\ 1 & -4 \end{bmatrix} \) and \(B = \begin{bmatrix} 1 & -2 \\ -1 & 3 \end{bmatrix} \), then verify that \((AB)^{-1} = B^{-1}A^{-1}\).

Solution We have \(AB = \begin{bmatrix} 2 & 3 \\ 1 & -4 \end{bmatrix} \begin{bmatrix} 1 & -2 \\ -1 & 3 \end{bmatrix} = \begin{bmatrix} -1 & 5 \\ -1 & 5 \end{bmatrix} \)

Since, \(|AB| = -11 \neq 0\), \((AB)^{-1}\) exists and is given by

\[
(AB)^{-1} = \frac{1}{|AB|} \text{adj}(AB) = -\frac{1}{11} \begin{bmatrix} -14 & -5 \\ -5 & -1 \end{bmatrix} = \frac{1}{11} \begin{bmatrix} -14 & 5 \\ -5 & 1 \end{bmatrix}
\]

Further, \(|A| = -11 \neq 0\) and \(|B| = 1 \neq 0\). Therefore, \(A^{-1}\) and \(B^{-1}\) both exist and are given by

\[
A^{-1} = -\frac{1}{11} \begin{bmatrix} -4 & -3 \\ -1 & 2 \end{bmatrix}, \quad B^{-1} = \begin{bmatrix} 3 & 2 \\ 1 & 1 \end{bmatrix}
\]
Therefore \[B^{-1}A^{-1} = -\frac{1}{11} \begin{bmatrix} 3 & 2 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} -4 & -3 \\ -1 & 2 \end{bmatrix} = -\frac{1}{11} \begin{bmatrix} -14 & -5 \\ -5 & -1 \end{bmatrix} = \frac{1}{11} \begin{bmatrix} 14 & 5 \\ 5 & 1 \end{bmatrix} \]

Hence \((AB)^{-1} = B^{-1} A^{-1}\)

Example 26 Show that the matrix \(A = \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix}\) satisfies the equation \(A^2 - 4A + I = O\), where \(I\) is \(2 \times 2\) identity matrix and \(O\) is \(2 \times 2\) zero matrix. Using this equation, find \(A^{-1}\).

Solution We have \(A^2 = A.A = \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 7 & 12 \\ 4 & 7 \end{bmatrix}\)

Hence \(A^2 - 4A + I = \begin{bmatrix} 7 & 12 \\ 4 & 7 \end{bmatrix} - \begin{bmatrix} 8 & 12 \\ 4 & 8 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = O\)

Now \(A^2 - 4A + I = O\)

Therefore \(A.A - 4A = -I\)

or \(A (A^{-1}) - 4A A^{-1} = -I A^{-1}\) (Post multiplying by \(A^{-1}\) because \(|A| \neq 0\))

or \(A (A^{-1}) - 4I = -A^{-1}\)

or \(A^{-1} = 4I - A = \begin{bmatrix} 4 & 0 \\ 0 & 4 \end{bmatrix} - \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 2 & -3 \\ -1 & 2 \end{bmatrix}\)

Hence \(A^{-1} = \begin{bmatrix} 2 & -3 \\ -1 & 2 \end{bmatrix}\)

EXERCISE 4.5

Find adjoint of each of the matrices in Exercises 1 and 2.

1. \(\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}\)

2. \(\begin{bmatrix} 1 & -1 & 2 \\ 2 & 3 & 5 \\ -2 & 0 & 1 \end{bmatrix}\)

Verify \(A (adj \ A) = (adj \ A) A = |A| \ I\) in Exercises 3 and 4

3. \(\begin{bmatrix} 2 & 3 \\ -4 & -6 \end{bmatrix}\)

4. \(\begin{bmatrix} 1 & -1 & 2 \\ 3 & 0 & -2 \\ 1 & 0 & 3 \end{bmatrix}\)
Find the inverse of each of the matrices (if it exists) given in Exercises 5 to 11.

5. \[
\begin{bmatrix}
2 & -2 \\
4 & 3
\end{bmatrix}
\]
6. \[
\begin{bmatrix}
-1 & 5 \\
-3 & 2
\end{bmatrix}
\]
7. \[
\begin{bmatrix}
1 & 2 & 3 \\
0 & 2 & 4 \\
0 & 0 & 5
\end{bmatrix}
\]

8. \[
\begin{bmatrix}
1 & 0 & 0 \\
3 & 3 & 0 \\
5 & 2 & -1
\end{bmatrix}
\]
9. \[
\begin{bmatrix}
2 & 1 & 3 \\
4 & -1 & 0 \\
-7 & 2 & 1
\end{bmatrix}
\]
10. \[
\begin{bmatrix}
1 & -1 & 2 \\
0 & 2 & -3 \\
3 & -2 & 4
\end{bmatrix}
\]

11. \[
\begin{bmatrix}
1 & 0 & 0 \\
0 & \cos \alpha & \sin \alpha \\
0 & \sin \alpha & -\cos \alpha
\end{bmatrix}
\]

12. Let \(A = \begin{bmatrix} 3 & 7 \\ 2 & 5 \end{bmatrix}\) and \(B = \begin{bmatrix} 6 & 8 \\ 7 & 9 \end{bmatrix}\). Verify that \((AB)^{-1} = B^{-1} A^{-1}\).

13. If \(A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}\), show that \(A^2 - 5A + 7I = 0\). Hence find \(A^{-1}\).

14. For the matrix \(A = \begin{bmatrix} 3 & 2 \\ 1 & 1 \end{bmatrix}\), find the numbers \(a\) and \(b\) such that \(A^2 + aA + bI = 0\).

15. For the matrix \(A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3 \end{bmatrix}\), show that \(A^3 - 6A^2 + 5A + 11I = 0\). Hence, find \(A^{-1}\).

16. If \(A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}\), verify that \(A^3 - 6A^2 + 9A - 4I = 0\) and hence find \(A^{-1}\).

17. Let \(A\) be a nonsingular square matrix of order \(3 \times 3\). Then \(|adj\ A|\) is equal to
 (A) \(|A|\) \quad (B) \(|A|^2\) \quad (C) \(|A|^3\) \quad (D) \(3|A|\)

18. If \(A\) is an invertible matrix of order 2, then \(\det (A^{-1})\) is equal to
 (A) \(\det (A)\) \quad (B) \(\frac{1}{\det (A)}\) \quad (C) 1 \quad (D) 0
4.7 Applications of Determinants and Matrices

In this section, we shall discuss applications of determinants and matrices for solving the system of linear equations in two or three variables and for checking the consistency of the system of linear equations.

Consistent system A system of equations is said to be *consistent* if its solution (one or more) exists.

Inconsistent system A system of equations is said to be *inconsistent* if its solution does not exist.

Note In this chapter, we restrict ourselves to the system of linear equations having unique solutions only.

4.7.1 Solution of system of linear equations using inverse of a matrix

Let us express the system of linear equations as matrix equations and solve them using inverse of the coefficient matrix.

Consider the system of equations

\[
\begin{align*}
a_1 x + b_1 y + c_1 z &= d_1, \\
a_2 x + b_2 y + c_2 z &= d_2, \\
a_3 x + b_3 y + c_3 z &= d_3.
\end{align*}
\]

Let

\[
A = \begin{bmatrix}
a_1 & b_1 & c_1 \\
a_2 & b_2 & c_2 \\
a_3 & b_3 & c_3
\end{bmatrix}, \quad X = \begin{bmatrix}
x \\
y \\
z
\end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix}
d_1 \\
d_2 \\
d_3
\end{bmatrix}
\]

Then, the system of equations can be written as, \(AX = B\), i.e.,

\[
\begin{bmatrix}
a_1 & b_1 & c_1 \\
a_2 & b_2 & c_2 \\
a_3 & b_3 & c_3
\end{bmatrix}\begin{bmatrix}
x \\
y \\
z
\end{bmatrix} = \begin{bmatrix}
d_1 \\
d_2 \\
d_3
\end{bmatrix}
\]

Case I If \(A\) is a nonsingular matrix, then its inverse exists. Now

\[AX = B\]

or \(A^{-1} (AX) = A^{-1} B\) (premultiplying by \(A^{-1}\))

or \((A^{-1}A) X = A^{-1} B\) (by associative property)

or \(I X = A^{-1} B\)

or \(X = A^{-1} B\)

This matrix equation provides unique solution for the given system of equations as inverse of a matrix is unique. This method of solving system of equations is known as Matrix Method.
Case II If A is a singular matrix, then $|A| = 0$.

In this case, we calculate $(adj \ A) \ B$.

If $(adj \ A) \ B \neq O$, (O being zero matrix), then solution does not exist and the system of equations is called inconsistent.

If $(adj \ A) \ B = O$, then system may be either consistent or inconsistent according as the system have either infinitely many solutions or no solution.

Example 27 Solve the system of equations

$$2x + 5y = 1$$
$$3x + 2y = 7$$

Solution The system of equations can be written in the form $AX = B$, where

$$A = \begin{bmatrix} 2 & 5 \\ 3 & 2 \end{bmatrix}, \quad X = \begin{bmatrix} x \\ y \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 1 \\ 7 \end{bmatrix}$$

Now, $|A| = -11 \neq 0$, Hence, A is nonsingular matrix and so has a unique solution.

Note that

$$A^{-1} = -\frac{1}{11} \begin{bmatrix} 2 & -5 \\ -3 & 2 \end{bmatrix}$$

Therefore

$$X = A^{-1}B = -\frac{1}{11} \begin{bmatrix} 2 & -5 \\ -3 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 7 \end{bmatrix}$$

i.e.

$$\begin{bmatrix} x \\ y \end{bmatrix} = -\frac{1}{11} \begin{bmatrix} -33 \\ 11 \end{bmatrix} = \begin{bmatrix} 3 \\ -1 \end{bmatrix}$$

Hence

$$x = 3, \quad y = -1$$

Example 28 Solve the following system of equations by matrix method.

$$3x - 2y + 3z = 8$$
$$2x + y - z = 1$$
$$4x - 3y + 2z = 4$$

Solution The system of equations can be written in the form $AX = B$, where

$$A = \begin{bmatrix} 3 & -2 & 3 \\ 2 & 1 & -1 \\ 4 & -3 & 2 \end{bmatrix}, \quad X = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 8 \\ 1 \\ 4 \end{bmatrix}$$

We see that

$$|A| = 3(2 - 3) + 2(4 + 4) + 3(-6 - 4) = -17 \neq 0$$
Hence, A is nonsingular and so its inverse exists. Now

\[A_{11} = -1, \quad A_{12} = -8, \quad A_{13} = -10 \]
\[A_{21} = -5, \quad A_{22} = -6, \quad A_{23} = 1 \]
\[A_{31} = -1, \quad A_{32} = 9, \quad A_{33} = 7 \]

Therefore

\[
A^{-1} = \frac{1}{17} \begin{bmatrix} -1 & -5 & -1 \\ -8 & -6 & 9 \\ -10 & 1 & 7 \end{bmatrix}
\]

So

\[
X = A^{-1}B = \frac{1}{17} \begin{bmatrix} -1 & -5 & -1 \\ -8 & -6 & 9 \\ -10 & 1 & 7 \end{bmatrix} \begin{bmatrix} 8 \\ 1 \\ 4 \end{bmatrix}
\]

i.e.

\[
\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{17} \begin{bmatrix} -17 \\ -34 \\ -51 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}
\]

Hence

\[x = 1, \quad y = 2 \quad \text{and} \quad z = 3. \]

Example 29 The sum of three numbers is 6. If we multiply third number by 3 and add second number to it, we get 11. By adding first and third numbers, we get double of the second number. Represent it algebraically and find the numbers using matrix method.

Solution Let first, second and third numbers be denoted by \(x \), \(y \) and \(z \), respectively. Then, according to given conditions, we have

\[x + y + z = 6 \]
\[y + 3z = 11 \]
\[x + z = 2y \quad \text{or} \quad x - 2y + z = 0 \]

This system can be written as \(AX = B \), where

\[
A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 3 \\ 1 & 2 & 1 \end{bmatrix}, \quad X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}, \quad \text{and} \quad B = \begin{bmatrix} 6 \\ 11 \\ 0 \end{bmatrix}
\]

Here \(|A| = 1(1+6) - (0-3) + (0-1) = 9 \neq 0 \). Now we find \(\text{adj} \ A \)

\[A_{11} = 1(1+6) = 7, \quad A_{12} = -(0-3) = 3, \quad A_{13} = -1 \]
\[A_{21} = -(1+2) = -3, \quad A_{22} = 0, \quad A_{23} = -(2-1) = 3 \]
\[A_{31} = (3-1) = 2, \quad A_{32} = -(3-0) = -3, \quad A_{33} = (1-0) = 1 \]
Hence

$$adj\ A = \begin{bmatrix} 7 & -3 & 2 \\ 3 & 0 & -3 \\ -1 & 3 & 1 \end{bmatrix}$$

Thus

$$A^{-1} = \frac{1}{|A|}\ adj\ (A) = \frac{1}{9} \begin{bmatrix} 7 & -3 & 2 \\ 3 & 0 & -3 \\ -1 & 3 & 1 \end{bmatrix}$$

Since

$$X = A^{-1} B$$

$$X = \frac{1}{9} \begin{bmatrix} 7 & -3 & 2 \\ 3 & 0 & -3 \\ -1 & 3 & 1 \end{bmatrix} \begin{bmatrix} 6 \\ 11 \\ 0 \end{bmatrix}$$

or

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{9} \begin{bmatrix} 42 - 33 + 0 \\ 18 + 0 + 0 \\ -6 + 33 + 0 \end{bmatrix} = \frac{1}{9} \begin{bmatrix} 9 \\ 18 \\ 27 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

Thus

$$x = 1, \ y = 2, \ z = 3$$

EXERCISE 4.6

Examine the consistency of the system of equations in Exercises 1 to 6.

1. \(x + 2y = 2\)
 \(2x + 3y = 3\)
2. \(2x - y = 5\)
 \(x + y = 4\)
3. \(x + 3y = 5\)
 \(2x + 6y = 8\)
4. \(x + y + z = 1\)
 \(2x + 3y + 2z = 2\)
 \(ax + ay + 2az = 4\)
5. \(3x - y - 2z = 2\)
 \(2y - z = -1\)
 \(3x - 5y = 3\)
6. \(5x - y + 4z = 5\)
 \(2x + 3y + 5z = 2\)
 \(5x - 2y + 6z = -1\)

Solve system of linear equations, using matrix method, in Exercises 7 to 14.

7. \(5x + 2y = 4\)
 \(7x + 3y = 5\)
8. \(2x - y = -2\)
 \(3x + 4y = 3\)
9. \(4x - 3y = 3\)
 \(3x - 5y = 7\)
10. \(5x + 2y = 3\)
 \(3x + 2y = 5\)
11. \(2x + y + z = 1\)
 \(x - 2y - z = \frac{3}{2}\)
 \(3y - 5z = 9\)
12. \(x - y + z = 4\)
 \(2x + y - 3z = 0\)
 \(x + y + z = 2\)
13. \(2x + 3y + 3z = 5\)
 \(x - 2y + z = -4\)
 \(3x - y - 2z = 3\)
14. \(x - y + 2z = 7\)
 \(3x + 4y - 5z = -5\)
 \(2x - y + 3z = 12\)
15. If \(A = \begin{bmatrix} 2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2 \end{bmatrix} \), find \(A^{-1} \). Using \(A^{-1} \) solve the system of equations

\[
\begin{align*}
2x - 3y + 5z &= 11 \\
3x + 2y - 4z &= -5 \\
x + y - 2z &= -3
\end{align*}
\]

16. The cost of 4 kg onion, 3 kg wheat and 2 kg rice is \(\text{₹} \) 60. The cost of 2 kg onion, 4 kg wheat and 6 kg rice is \(\text{₹} \) 90. The cost of 6 kg onion 2 kg wheat and 3 kg rice is \(\text{₹} \) 70. Find cost of each item per kg by matrix method.

Miscellaneous Examples

Example 30 If \(a, b, c \) are positive and unequal, show that value of the determinant

\[
\Delta = \begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix}
\]

is negative.

Solution Applying \(C_1 \rightarrow C_1 + C_2 + C_3 \) to the given determinant, we get

\[
\Delta = \begin{vmatrix} a+b+c & b & c \\ a+b+c & c & a \\ a+b+c & a & b \end{vmatrix}
\]

\[
= (a + b + c) \begin{vmatrix} 1 & b & c \\ 0 & c-b & a-c \\ 0 & a-b & b-c \end{vmatrix}
\]

\[
= (a + b + c) [(c - b)(b - c) - (a - c)(a - b)]
\]

\[
= (a + b + c)(-a^2 - b^2 - c^2 + ab + bc + ca)
\]

\[
= \frac{-1}{2} (a + b + c) (2a^2 + 2b^2 + 2c^2 - 2ab - 2bc - 2ca)
\]

which is negative (since \(a + b + c > 0 \) and \((a - b)^2 + (b - c)^2 + (c - a)^2 > 0 \))
Example 31 If \(a, b, c\), are in A.P, find value of

\[
\begin{vmatrix}
2y+4 & 5y+7 & 8y+a \\
3y+5 & 6y+8 & 9y+b \\
4y+6 & 7y+9 & 10y+c
\end{vmatrix}
\]

Solution Applying \(R_1 \rightarrow R_1 + R_3 - 2R_2\) to the given determinant, we obtain

\[
\begin{vmatrix}
0 & 0 & 0 \\
3y+5 & 6y+8 & 9y+b \\
4y+6 & 7y+9 & 10y+c
\end{vmatrix} = 0 \quad \text{(Since } 2b = a + c)\]

Example 32 Show that

\[
\Delta = \left|\begin{array}{ccc}
(y+z)^2 & xy & zx \\
xy & (x+z)^2 & yz \\
xz & yz & (x+y)^2
\end{array}\right| = 2xyz(x+y+z)^3
\]

Solution Applying \(R_1 \rightarrow xR_1, R_2 \rightarrow yR_2, R_3 \rightarrow zR_3\) to \(\Delta\) and dividing by \(xyz\), we get

\[
\Delta = \frac{1}{xyz} \left|\begin{array}{ccc}
x(y+z)^2 & x^2y & x^2z \\
x^2y & y(x+z)^2 & y^2z \\
x^2z & y^2z & z(x+y)^2
\end{array}\right|
\]

Taking common factors \(x, y, z\) from \(C_1, C_2\) and \(C_3\), respectively, we get

\[
\Delta = \frac{xyz}{xyz} \left|\begin{array}{ccc}
(y+z)^2 & x^2 & x^2 \\
y^2 & (x+z)^2 & y^2 \\
z^2 & z^2 & (x+y)^2
\end{array}\right|
\]

Applying \(C_2 \rightarrow C_2 - C_1, C_3 \rightarrow C_3 - C_1\), we have

\[
\Delta = \left|\begin{array}{ccc}
(y+z)^2 & x^2 - (y+z)^2 & x^2 - (y+z)^2 \\
y^2 & (x+z)^2 - y^2 & 0 \\
z^2 & 0 & (x+y)^2 - z^2
\end{array}\right|
\]
Taking common factor \((x + y + z)\) from \(C_2\) and \(C_3\), we have

\[
\Delta = (x + y + z)^2 \begin{vmatrix}
(y+z)^3 & x-(y+z) & x-(y+z) \\
y^3 & (x+y) - y & 0 \\
z^3 & 0 & (x+y) - z
\end{vmatrix}
\]

Applying \(R_1 \rightarrow R_1 - (R_2 + R_3)\), we have

\[
\Delta = (x + y + z)^2 \begin{vmatrix}
2yz & -2z & -2y \\
y^2 & x-y+z & 0 \\
z^2 & 0 & x+y-z
\end{vmatrix}
\]

Applying \(C_2 \rightarrow (C_2 + \frac{1}{y} C_1)\) and \(C_3 \rightarrow C_3 + \frac{1}{z} C_1\), we get

\[
\Delta = (x + y + z)^2 \begin{vmatrix}
2yz & 0 & 0 \\
y^2 & x+z & \frac{y^2}{z} \\
z^2 & \frac{z^2}{y} & x+y
\end{vmatrix}
\]

Finally expanding along \(R_1\), we have

\[
\Delta = (x + y + z)^3 (2yz) [(x+z)(x+y) - yz] = (x + y + z)^2 (2yz) (x^2 + xy + xz)
\]

\[
= (x + y + z)^3 (2xyz)
\]

Example 33 Use product

\[
\begin{bmatrix}
1 & 1 & 2 \\
0 & 2 & 3 \\
3 & 2 & 4
\end{bmatrix}
\begin{bmatrix}
2 & 0 & 1 \\
9 & 2 & 3 \\
6 & 1 & 2
\end{bmatrix}
\]

to solve the system of equations

\[
x - y + 2z = 1 \\
2y - 3z = 1 \\
3x - 2y + 4z = 2
\]

Solution Consider the product

\[
\begin{bmatrix}
1 & -1 & 2 \\
0 & 2 & -3 \\
3 & -2 & 4
\end{bmatrix}
\begin{bmatrix}
-2 & 0 & 1 \\
9 & 2 & -3 \\
6 & 1 & -2
\end{bmatrix}
\]
\[
\begin{bmatrix}
-2 - 9 + 12 & 0 - 2 + 2 & 1 + 3 - 4 \\
0 + 18 - 18 & 0 + 4 - 3 & 0 - 6 + 6 \\
-6 - 18 + 24 & 0 - 4 + 4 & 3 + 6 - 8
\end{bmatrix} =
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
\]

Hence
\[
\begin{bmatrix}
1 & -1 & 2 \\
0 & 2 & -3 \\
3 & -2 & 4
\end{bmatrix}^i
= \begin{bmatrix}
-2 & 0 & 1 \\
9 & 2 & -3 \\
6 & 1 & -2
\end{bmatrix}
\]

Now, given system of equations can be written, in matrix form, as follows
\[
\begin{bmatrix}
1 & -1 & 2 \\
0 & 2 & -3 \\
3 & -2 & 4
\end{bmatrix}
\begin{bmatrix}
x \\ y \\ z
\end{bmatrix} =
\begin{bmatrix}
1 \\ 1 \\ 2
\end{bmatrix}
\]

or
\[
x = \begin{bmatrix}
1 & -1 & 2
\end{bmatrix}^{-1}
\begin{bmatrix}
1 \\ 2 \\ 0 \\ 1
\end{bmatrix}
= \begin{bmatrix}
2 \\ 0 \\ 1
\end{bmatrix}
\]

Hence
\[
x = 0, y = 5 \text{ and } z = 3
\]

Example 34 Prove that
\[
\Delta = \begin{vmatrix}
a + bx & c + dx & p + qx \\
ax + b & cx + d & px + q \\
u & v & w
\end{vmatrix} = (1 - x^2)
\begin{vmatrix}
a & c & p \\
b & d & q \\
u & v & w
\end{vmatrix}
\]

Solution Applying \(R_1 \rightarrow R_1 - x R_2 \) to \(\Delta \), we get
\[
\Delta = \begin{vmatrix}
a(1 - x^2) & c(1 - x^2) & p(1 - x^2) \\
ax + b & cx + d & px + q \\
u & v & w
\end{vmatrix} = (1 - x^2)
\begin{vmatrix}
a & c & p \\
b & d & q \\
u & v & w
\end{vmatrix}
\]
Applying \(R_2 \rightarrow R_2 - x \cdot R_1 \), we get

\[
\Delta = \begin{vmatrix}
a & c & p \\
b & d & q \\
u & v & w
\end{vmatrix} = (1 - x^2) \Delta
\]

Miscellaneous Exercises on Chapter 4

1. Prove that the determinant

\[
\begin{vmatrix}
x & \sin \theta & \cos \theta \\
-x & 1 & x \\
\cos \theta & 1 & x
\end{vmatrix}
\]

is independent of \(\theta \).

2. Without expanding the determinant, prove that

\[
\begin{vmatrix}
a & a^2 & bc \\
b & b^2 & ca \\
c & c^2 & ab
\end{vmatrix} = \begin{vmatrix}
a & a \\
b & b \\
c & c
\end{vmatrix}.
\]

3. Evaluate

\[
\begin{vmatrix}
\cos \alpha & \cos \beta & \cos \alpha \sin \beta - \sin \alpha \\
\sin \beta & \cos \alpha & 0 \\
\sin \alpha & \sin \beta & \cos \alpha
\end{vmatrix}.
\]

4. If \(a, b \) and \(c \) are real numbers, and

\[
\Delta = \begin{vmatrix}
b + c & c + a & a + b \\
c + a & a + b & b + c \\
a + b & b + c & c + a
\end{vmatrix} = 0,
\]

Show that either \(a + b + c = 0 \) or \(a = b = c \).

5. Solve the equation

\[
\begin{vmatrix}
x + a & x & x \\
x & x + a & x \\
x & x & x + a
\end{vmatrix} = 0, \quad a \neq 0
\]

6. Prove that

\[
\begin{vmatrix}
a^2 & bc & ac + c^2 \\
a^2 + ab & b^2 & ac \\
ab & b^2 + bc & c^2
\end{vmatrix} = 4a^2b^2c^2
\]

7. If \(A^{-1} = \begin{bmatrix} 3 & -1 & 1 \\ -15 & 6 & -5 \\ 5 & -2 & 2 \end{bmatrix} \) and \(B = \begin{bmatrix} 1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1 \end{bmatrix} \), find \((AB)^{-1}\)
8. Let \(A = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 3 & 1 \\ 1 & 1 & 5 \end{bmatrix} \). Verify that

(i) \([\text{adj } A]^{-1} = \text{adj } (A^{-1}) \)
(ii) \((A^{-1})^{-1} = A \)

9. Evaluate

\[
\begin{vmatrix} x & y & x+y \\ y & x+y & x \\ x+y & x & y \end{vmatrix}
\]

10. Evaluate

\[
\begin{vmatrix} 1 & x & y \\ 1+x+y & y & x \\ 1 & x+y & x \end{vmatrix}
\]

Using properties of determinants in Exercises 11 to 15, prove that:

11. \[
\begin{vmatrix} \alpha & \alpha' & \beta+\gamma \\ \beta & \beta' & \gamma+\alpha \\ \gamma & \gamma' & \alpha+\beta \end{vmatrix} = (\beta - \gamma) \ (\gamma - \alpha) \ (\alpha - \beta) \ (\alpha + \beta + \gamma)
\]

12. \[
\begin{vmatrix} x & x^2 & 1+px^2 \\ y & y^2 & 1+py^2 \\ z & z^2 & 1+pz^2 \end{vmatrix} = (1 + pxyz) \ (x - y) \ (y - z) \ (z - x), \text{ where } p \text{ is any scalar.}
\]

13. \[
\begin{vmatrix} 3a & -a+b & -a+c \\ -b+a & 3b & -b+c \\ -c+a & -c+b & 3c \end{vmatrix} = 3(a + b + c) \ (ab + bc + ca)
\]

14. \[
\begin{vmatrix} 1 & 1+p & 1+p+q \\ 2 & 3+2p & 4+3p+2q \\ 3 & 6+3p & 10+6p+3q \end{vmatrix} = 1
\]

15. \[
\begin{vmatrix} \sin \alpha & \cos \alpha & \cos(\alpha + \delta) \\ \sin \beta & \cos \beta & \cos(\beta + \delta) \\ \sin \gamma & \cos \gamma & \cos(\gamma + \delta) \end{vmatrix} = 0
\]

16. Solve the system of equations

\[
\frac{2}{x} + \frac{3}{y} + \frac{10}{z} = 4
\]
Choose the correct answer in Exercise 17 to 19.

17. If a, b, c, are in A.P, then the determinant

\[
\begin{vmatrix}
 x+2 & x+3 & x+2a \\
 x+3 & x+4 & x+2b \\
 x+4 & x+5 & x+2c
\end{vmatrix}
\]

is

(A) 0 \hspace{1cm} (B) 1 \hspace{1cm} (C) x \hspace{1cm} (D) $2x$

18. If x, y, z are nonzero real numbers, then the inverse of matrix $A = \begin{bmatrix} x & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & z \end{bmatrix}$ is

(A) $\begin{bmatrix} x^{-1} & 0 & 0 \\ 0 & y^{-1} & 0 \\ 0 & 0 & z^{-1} \end{bmatrix}$ \hspace{1cm} (B) $\begin{bmatrix} x^{-1} & 0 & 0 \\ 0 & y^{-1} & 0 \\ 0 & 0 & z^{-1} \end{bmatrix}$

(B) $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

(C) $\begin{bmatrix} x & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & z \end{bmatrix}$

19. Let $A = \begin{bmatrix} 1 & \sin \theta & 1 \\ -\sin \theta & 1 & \sin \theta \\ -1 & -\sin \theta & 1 \end{bmatrix}$, where $0 \leq \theta \leq 2\pi$. Then

(A) $\text{Det}(A) = 0$ \hspace{1cm} (B) $\text{Det}(A) \in (2, \infty)$

(C) $\text{Det}(A) \in (2, 4)$ \hspace{1cm} (D) $\text{Det}(A) \in [2, 4]$
Summary

- Determinant of a matrix $A = [a_{ij}]_{1 \times 1}$ is given by $|A_{11}| = a_{11}$

- Determinant of a matrix $A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$ is given by

$$|A| = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}$$

- Determinant of a matrix $A = \begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{bmatrix}$ is given by (expanding along R_1)

$$|A| = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = a_1 \begin{vmatrix} b_2 & c_2 \\ b_3 & c_3 \end{vmatrix} - b_1 \begin{vmatrix} a_2 & c_2 \\ a_3 & c_3 \end{vmatrix} + c_1 \begin{vmatrix} a_2 & b_2 \\ a_3 & b_3 \end{vmatrix}$$

For any square matrix A, the $|A|$ satisfy following properties.

- $|A'| = |A|$, where A' = transpose of A.
- If we interchange any two rows (or columns), then sign of determinant changes.
- If any two rows or any two columns are identical or proportional, then value of determinant is zero.
- If we multiply each element of a row or a column of a determinant by constant k, then value of determinant is multiplied by k.
- Multiplying a determinant by k means multiply elements of only one row (or one column) by k.
- If $A = [a_{ij}]_{3 \times 3}$, then $|k \cdot A| = k^3 |A|$
- If elements of a row or a column in a determinant can be expressed as sum of two or more elements, then the given determinant can be expressed as sum of two or more determinants.
- If to each element of a row or a column of a determinant the equimultiples of corresponding elements of other rows or columns are added, then value of determinant remains same.
Area of a triangle with vertices \((x_1, y_1), (x_2, y_2)\) and \((x_3, y_3)\) is given by

\[
\Delta = \frac{1}{2} \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix}
\]

Minor of an element \(a_{ij}\) of the determinant of matrix \(A\) is the determinant obtained by deleting \(i^{th}\) row and \(j^{th}\) column and denoted by \(M_{ij}\).

Cofactor of \(a_{ij}\) is given by \(A_{ij} = (-1)^{i+j} M_{ij}\).

Value of determinant of a matrix \(A\) is obtained by sum of product of elements of a row (or a column) with corresponding cofactors. For example,

\[
|A| = a_{11} A_{11} + a_{12} A_{12} + a_{13} A_{13}.
\]

If elements of one row (or column) are multiplied with cofactors of elements of any other row (or column), then their sum is zero. For example, \(a_{11} A_{21} + a_{12} A_{22} + a_{13} A_{23} = 0\)

If \(A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}\), then \(\text{adj } A = \begin{bmatrix} A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33} \end{bmatrix}\), where \(A_{ij}\) is cofactor of \(a_{ij}\).

\(A (\text{adj } A) = (\text{adj } A) A = |A| I\), where \(A\) is square matrix of order \(n\).

A square matrix \(A\) is said to be singular or non-singular according as \(|A| = 0\) or \(|A| \neq 0\).

If \(AB = BA = I\), where \(B\) is square matrix, then \(B\) is called inverse of \(A\). Also \(A^{-1} = B\) or \(B^{-1} = A\) and hence \((A^{-1})^{-1} = A\).

A square matrix \(A\) has inverse if and only if \(A\) is non-singular.

\[
A^{-1} = \frac{1}{|A|} (\text{adj } A)
\]

If

\[
\begin{align*}
\quad a_1 x + b_1 y + c_1 z &= d_1 \\
\quad a_2 x + b_2 y + c_2 z &= d_2 \\
\quad a_3 x + b_3 y + c_3 z &= d_3,
\end{align*}
\]

then these equations can be written as \(AX = B\), where

\[
A = \begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{bmatrix}, \quad X = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \text{ and } B = \begin{bmatrix} d_1 \\ d_2 \\ d_3 \end{bmatrix}
\]
Unique solution of equation $AX = B$ is given by $X = A^{-1}B$, where $|A| \neq 0$.

A system of equation is consistent or inconsistent according as its solution exists or not.

For a square matrix A in matrix equation $AX = B$

(i) $|A| \neq 0$, there exists unique solution

(ii) $|A| = 0$ and $(adj \ A) B \neq 0$, then there exists no solution

(iii) $|A| = 0$ and $(adj \ A) B = 0$, then system may or may not be consistent.

Historical Note

The Chinese method of representing the coefficients of the unknowns of several linear equations by using rods on a calculating board naturally led to the discovery of simple method of elimination. The arrangement of rods was precisely that of the numbers in a determinant. The Chinese, therefore, early developed the idea of subtracting columns and rows as in simplification of a determinant *Mikami, China, pp 30, 93.*

Seki Kowa, the greatest of the Japanese Mathematicians of seventeenth century in his work *‘Kai Fukudai no Ho’* in 1683 showed that he had the idea of determinants and of their expansion. But he used this device only in eliminating a quantity from two equations and not directly in the solution of a set of simultaneous linear equations. T. Hayashi, “The Fakudoi and Determinants in Japanese Mathematics,” in the proc. of the Tokyo Math. Soc., V.

Vandermonde was the first to recognise determinants as independent functions. He may be called the formal founder. Laplace (1772), gave general method of expanding a determinant in terms of its complementary minors. In 1773 Lagrange treated determinants of the second and third orders and used them for purpose other than the solution of equations. In 1801, Gauss used determinants in his theory of numbers.

The next great contributor was Jacques - Philippe - Marie Binet, (1812) who stated the theorem relating to the product of two matrices of m-columns and n-rows, which for the special case of $m = n$ reduces to the multiplication theorem.

Also on the same day, Cauchy (1812) presented one on the same subject. He used the word ‘determinant’ in its present sense. He gave the proof of multiplication theorem more satisfactory than Binet’s.

The greatest contributor to the theory was Carl Gustav Jacob Jacobi, after this the word determinant received its final acceptance.